scholarly journals The Spectral Scale of a Self-Adjoint Operator in a Semifinite von Neumann Algebra

2011 ◽  
Vol 2011 ◽  
pp. 1-24
Author(s):  
Christopher M. Pavone

We extend Akemann, Anderson, and Weaver'sSpectral Scaledefinition to include selfadjoint operators fromsemifinitevon Neumann algebras. New illustrations of spectral scales in both the finite and semifinite von Neumann settings are presented. A counterexample to a conjecture made by Akemann concerning normal operators and the geometry of the their perspective spectral scales (in the finite setting) is offered.

2008 ◽  
Vol 19 (04) ◽  
pp. 481-501 ◽  
Author(s):  
TETSUO HARADA ◽  
HIDEKI KOSAKI

Let τ be a faithful semi-finite normal trace on a semi-finite von Neumann algebra, and f(t) be a convex function with f(0) = 0. The trace Jensen inequality states τ(f(a* xa)) ≤ τ(a* f(x)a) for a contraction a and a self-adjoint operator x. Under certain strict convexity assumption on f(t), we will study when this inequality reduces to the equality.


Author(s):  
J. Kaad ◽  
R. Nest ◽  
A. Rennie

AbstractWe present a definition of spectral flow for any norm closed ideal J in any von Neumann algebra N. Given a path of selfadjoint operators in N which are invertible in N/J, the spectral flow produces a class in Ko(J).Given a semifinite spectral triple (A, H, D) relative to (N, τ) with A separable, we construct a class [D] ∈ KK1(A, K(N)). For a unitary u ∈ A, the von Neumann spectral flow between D and u*Du is equal to the Kasparov product [u]A[D], and is simply related to the numerical spectral flow, and a refined C*-spectral flow.


Author(s):  
Panchugopal Bikram ◽  
Rahul Kumar ◽  
Rajeeb Mohanta ◽  
Kunal Mukherjee ◽  
Diptesh Saha

Bożejko and Speicher associated a finite von Neumann algebra M T to a self-adjoint operator T on a complex Hilbert space of the form $\mathcal {H}\otimes \mathcal {H}$ which satisfies the Yang–Baxter relation and $ \left\| T \right\| < 1$ . We show that if dim $(\mathcal {H})$ ⩾ 2, then M T is a factor when T admits an eigenvector of some special form.


Author(s):  
YONG MOON PARK

For a von Neumann algebra ࡕ acting on a Hilbert space ℋ with a cyclic and separating vector ξ0, we investigate the structure of Dirichlet forms on the natural standard form associated with the pair (ࡕ, ξ0). For a general bounded Lindblad type generator L of a conservative quantum dynamical semigroup on ࡕ, we give sufficient conditions so that the bounded operator H induced by L via the symmetric embedding of ࡕ into ℋ to be self-adjoint. It turns out that the self-adjoint operator H can be written in the form of a Dirichlet operator associated to a Dirichlet form given in Ref. 23. In order to make the connection possible, we also extend the range of applications of the formula in Ref. 23.


2006 ◽  
Vol 58 (4) ◽  
pp. 768-795 ◽  
Author(s):  
Zhiguo Hu ◽  
Matthias Neufang

AbstractThe decomposability number of a von Neumann algebra ℳ (denoted by dec(ℳ)) is the greatest cardinality of a family of pairwise orthogonal non-zero projections in ℳ. In this paper, we explore the close connection between dec(ℳ) and the cardinal level of the Mazur property for the predual ℳ* of ℳ, the study of which was initiated by the second author. Here, our main focus is on those von Neumann algebras whose preduals constitute such important Banach algebras on a locally compact group G as the group algebra L1(G), the Fourier algebra A(G), the measure algebra M(G), the algebra LUC(G)*, etc. We show that for any of these von Neumann algebras, say ℳ, the cardinal number dec(ℳ) and a certain cardinal level of the Mazur property of ℳ* are completely encoded in the underlying group structure. In fact, they can be expressed precisely by two dual cardinal invariants of G: the compact covering number κ(G) of G and the least cardinality ᙭(G) of an open basis at the identity of G. We also present an application of the Mazur property of higher level to the topological centre problem for the Banach algebra A(G)**.


2018 ◽  
Vol 68 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Fangfang Zhao ◽  
Changjing Li

AbstractLetB(H) be the algebra of all bounded linear operators on a complex Hilbert spaceHand 𝓐 ⊆B(H) be a von Neumann algebra with no central summands of typeI1. ForA,B∈ 𝓐, define byA∙B=AB+BA∗a new product ofAandB. In this article, it is proved that a map Φ: 𝓐 →B(H) satisfies Φ(A∙B∙C) = Φ(A) ∙B∙C+A∙ Φ(B) ∙C+A∙B∙Φ(C) for allA,B,C∈ 𝓐 if and only if Φ is an additive *-derivation.


1971 ◽  
Vol 23 (5) ◽  
pp. 849-856 ◽  
Author(s):  
P. K. Tam

The following (so-called unitary equivalence) problem is of paramount importance in the theory of operators: given two (bounded linear) operators A1, A2 on a (complex) Hilbert space , determine whether or not they are unitarily equivalent, i.e., whether or not there is a unitary operator U on such that U*A1U = A2. For normal operators this question is completely answered by the classical multiplicity theory [7; 11]. Many authors, in particular, Brown [3], Pearcy [9], Deckard [5], Radjavi [10], and Arveson [1; 2], considered the problem for non-normal operators and have obtained various significant results. However, most of their results (cf. [13]) deal only with operators which are of type I in the following sense [12]: an operator, A, is of type I (respectively, II1, II∞, III) if the von Neumann algebra generated by A is of type I (respectively, II1, II∞, III).


1971 ◽  
Vol 23 (4) ◽  
pp. 598-607 ◽  
Author(s):  
Ole A. Nielsen

The fact that any von Neumann algebra on a separable Hilbert space has an essentially unique direct integral decomposition into factors means that there is a global as well as a local aspect to any partial classification of von Neumann algebras. More precisely, suppose that J is a statement about von Neumann algebras which is either true or false for any given von Neumann algebra. Then a von Neumann algebra is said to satisfy J globally if it satisfies J, and to satsify J locally if almost all the factors appearing in some (and hence in any) central decomposition of it satisfy J . In a recent paper [3], H. Araki and E. J. Woods introduced the notion of the asymptotic ratio set of a factor, and by means of this they made remarkable progress in the classification of factors.


1981 ◽  
Vol 24 (1) ◽  
pp. 87-90
Author(s):  
Sze-Kai Tsui

AbstractIf is a von Neumann algebra that thas no nonzero finite discrete central projection, then there is no nontrivial compact derivation of into itself.


Author(s):  
Martijn Caspers

AbstractConsider the free orthogonal quantum groups $$O_N^+(F)$$ O N + ( F ) and free unitary quantum groups $$U_N^+(F)$$ U N + ( F ) with $$N \ge 3$$ N ≥ 3 . In the case $$F = \text {id}_N$$ F = id N it was proved both by Isono and Fima-Vergnioux that the associated finite von Neumann algebra $$L_\infty (O_N^+)$$ L ∞ ( O N + ) is strongly solid. Moreover, Isono obtains strong solidity also for $$L_\infty (U_N^+)$$ L ∞ ( U N + ) . In this paper we prove for general $$F \in GL_N(\mathbb {C})$$ F ∈ G L N ( C ) that the von Neumann algebras $$L_\infty (O_N^+(F))$$ L ∞ ( O N + ( F ) ) and $$L_\infty (U_N^+(F))$$ L ∞ ( U N + ( F ) ) are strongly solid. A crucial part in our proof is the study of coarse properties of gradient bimodules associated with Dirichlet forms on these algebras and constructions of derivations due to Cipriani–Sauvageot.


Sign in / Sign up

Export Citation Format

Share Document