DIVERGENCE FORM PARABOLIC EQUATIONS ON TIME-DEPENDENT QUASICONVEX DOMAINS

2012 ◽  
Vol 23 (12) ◽  
pp. 1250128 ◽  
Author(s):  
HUILIAN JIA ◽  
LIHE WANG

In this paper, we show the [Formula: see text] regularity of divergence form parabolic equations on time-dependent quasiconvex domains. The objective is to study the optimal parabolic boundary condition for the Lp estimates. The time-dependent quasiconvex domain is a generalization of the time-dependent Reifenberg flat domain, and assesses some properties analog to the convex domain. As to the a priori estimates near the boundary, we will apply the maximal function technique, Vitali covering lemma and the compactness method.

2018 ◽  
Vol 7 (4) ◽  
pp. 425-447 ◽  
Author(s):  
Lorenzo D’Ambrosio ◽  
Enzo Mitidieri

AbstractThe paper is concerned with a priori estimates of positive solutions of quasilinear elliptic systems of equations or inequalities in an open set of {\Omega\subset\mathbb{R}^{N}} associated to general continuous nonlinearities satisfying a local assumption near zero. As a consequence, in the case {\Omega=\mathbb{R}^{N}}, we obtain nonexistence theorems of positive solutions. No hypotheses on the solutions at infinity are assumed.


Author(s):  
Maria Shan

We are concerned with divergence type quasilinear parabolic equation with measurable coefficients and lower order terms model of which is a doubly nonlinear anisotropic parabolic equations with absorption term. This class of equations has numerous applications which appear in modeling of electrorheological fluids, image precessing, theory of elasticity, theory of non-Newtonian fluids with viscosity depending on the temperature. But the qualitative theory doesn't construct for these anisotropic equations. So, naturally, that during the last decade there has been growing substantial development in the qualitative theory of second order anisotropic elliptic and parabolic equations. The main purpose is to obtain the pointwise upper estimates in terms of distance to the boundary for nonnegative solutions of such equations. This type of estimates originate from the work of J. B. Keller, R. Osserman, who obtained a simple upper bound for any solution, in any number of variables for Laplace equation. These estimates play a crucial role in the theory of existence or nonexistence of so called large solutions of such equations, in the problems of removable singularities for solutions to elliptic and parabolic equations. Up to our knowledge all the known estimates for large solutions to elliptic and parabolic equations are related with equations for which some comparison properties hold. We refer to I.I. Skrypnik, A.E. Shishkov, M. Marcus , L. Veron, V.D. Radulescu for an account of these results and references therein. Such equations have been the object of very few works because in general such properties do not hold. The main ones concern equations only in the precise choice of absorption term \(f(u)=u^q\). Among the people who published significative results in this direction are I.I. Skrypnik, J. Vetois, F.C. Cirstea, J. Garcia-Melian, J.D. Rossi, J.C. Sabina de Lis. The main result of the paper is a priori estimates of Keller-Osserman type for nonnegative solutions of a doubly nonlinear anisotropic parabolic equations with absorption term that have been proven despite of the lack of comparison principle. To obtain these estimates we exploit the method of energy estimations and De Giorgy iteration techniques.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Lihua Deng ◽  
Xianguang Shang

This paper is devoted to the Cauchy problem for a class of doubly degenerate parabolic equation with time-dependent gradient source, where the initial data are Radon measures. Using the delicate a priori estimates, we first establish two local existence results. Furthermore, we show that the existence of solutions is optimal in the class considered here.


1999 ◽  
Vol 09 (01) ◽  
pp. 93-110 ◽  
Author(s):  
A. A. SAMARSKII ◽  
V. I. MAZHUKIN ◽  
P. P. MATUS ◽  
V. G. RYCHAGOV ◽  
I. SMUROV

In this paper, invariant difference schemes for nonstationary equations under independent variables transformation constructed and investigated. Under invariance of difference scheme we mean its ability to preserve basic properties (stability, approximation, convergency, etc.) in various coordinate systems. Difference schemes of the second-order approximation that satisfy the invariance property are constructed for equations of parabolic type. Stability and convergency investigation of correspondent difference problems are carried out; a priori estimates in various grid norms are obtained.


Sign in / Sign up

Export Citation Format

Share Document