INCOMPRESSIBLE MRT LATTICE BOLTZMANN MODEL WITH EIGHT VELOCITIES IN 2D SPACE

2009 ◽  
Vol 20 (07) ◽  
pp. 1023-1037 ◽  
Author(s):  
RUI DU ◽  
BAOCHANG SHI

In this paper a two-dimensional-eight-velocity lattice Boltzmann model with multi-relaxation-time is proposed for incompressible flows, in which the equilibria in the momentum space are derived from an earlier incompressible lattice Boltzmann model with single relaxation time. Through the Chapman–Enskog expansion, the incompressible Navier–Stokes equations can be recovered. Numerical tests, including the steady Poiseuille flow, the double shear flow and the driven cavity flow, have been carried out to verify the present model. The numerical results agree well with the analytical solutions or the existing results, and it is found that the present model exhibits much better numerical stability than the single relaxation time model.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Sheng Chen

To simulate turbulent buoyant flow in geophysical science, where usually the vorticity-streamfunction equations instead of the primitive-variables Navier-Stokes equations serve as the governing equations, a novel and simple thermal lattice Boltzmann model is proposed based on large eddy simulation (LES). Thanks to its intrinsic features, the present model is efficient and simple for thermal turbulence simulation. Two-dimensional numerical simulations of natural convection in a square cavity were performed at high Rayleigh number varying from 104 to 1010 with Prandtl number at 0.7. The advantages of the present model are validated by numerical experiments.


2019 ◽  
Vol 68 (23) ◽  
pp. 234701
Author(s):  
Jia-Yi Hu ◽  
Wen-Huan Zhang ◽  
Zhen-Hua Chai ◽  
Bao-Chang Shi ◽  
Yi-Hang Wang

Sign in / Sign up

Export Citation Format

Share Document