scholarly journals COMPARATIVE STUDY OF SEMICLASSICAL APPROACHES TO QUANTUM DYNAMICS

2009 ◽  
Vol 20 (08) ◽  
pp. 1155-1186 ◽  
Author(s):  
G. SCHUBERT ◽  
V. S. FILINOV ◽  
K. MATYASH ◽  
R. SCHNEIDER ◽  
H. FEHSKE

Quantum states can be described equivalently by density matrices, Wigner functions, or quantum tomograms. We analyze the accuracy and performance of three related semiclassical approaches to quantum dynamics, in particular with respect to their numerical implementation. As test cases, we consider the time evolution of Gaussian wave packets in different one-dimensional geometries, whereby tunneling, resonance, and anharmonicity effects are taken into account. The results and methods are benchmarked against an exact quantum mechanical treatment of the system, which is based on a highly efficient Chebyshev expansion technique of the time evolution operator.

2015 ◽  
Vol 18 (1) ◽  
pp. 91-103 ◽  
Author(s):  
Ilkka Ruokosenmäki ◽  
Tapio T. Rantala

AbstractApplicability of Feynman path integral approach to numerical simulations of quantum dynamics of an electron in real time domain is examined. Coherent quantum dynamics is demonstrated with one dimensional test cases (quantum dot models) and performance of the Trotter kernel as compared with the exact kernels is tested. Also, a novel approach for finding the ground state and other stationary sates is presented. This is based on the incoherent propagation in real time. For both approaches the Monte Carlo grid and sampling are tested and compared with regular grids and sampling. We asses the numerical prerequisites for all of the above.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Vijay Balasubramanian ◽  
Matthew DeCross ◽  
Arjun Kar ◽  
Yue Li ◽  
Onkar Parrikar

Abstract We use the SYK family of models with N Majorana fermions to study the complexity of time evolution, formulated as the shortest geodesic length on the unitary group manifold between the identity and the time evolution operator, in free, integrable, and chaotic systems. Initially, the shortest geodesic follows the time evolution trajectory, and hence complexity grows linearly in time. We study how this linear growth is eventually truncated by the appearance and accumulation of conjugate points, which signal the presence of shorter geodesics intersecting the time evolution trajectory. By explicitly locating such “shortcuts” through analytical and numerical methods, we demonstrate that: (a) in the free theory, time evolution encounters conjugate points at a polynomial time; consequently complexity growth truncates at O($$ \sqrt{N} $$ N ), and we find an explicit operator which “fast-forwards” the free N-fermion time evolution with this complexity, (b) in a class of interacting integrable theories, the complexity is upper bounded by O(poly(N)), and (c) in chaotic theories, we argue that conjugate points do not occur until exponential times O(eN), after which it becomes possible to find infinitesimally nearby geodesics which approximate the time evolution operator. Finally, we explore the notion of eigenstate complexity in free, integrable, and chaotic models.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Latha S. Warrier

The Abrams-Lloyd quantum algorithm computes an eigenvalue and the corresponding eigenstate of a unitary matrix from an approximate eigenvector Va. The eigenstate is a basis vector in the orthonormal eigenspace. Finding another eigenvalue, using a random approximate eigenvector, may require many trials as the trial may repeatedly result in the eigenvalue measured earlier. We present a method involving orthogonalization of the eigenstate obtained in a trial. It is used as the Va for the next trial. Because of the orthogonal construction, Abrams-Lloyd algorithm will not repeat the eigenvalue measured earlier. Thus, all the eigenvalues are obtained in sequence without repetitions. An operator that anticommutes with a unitary operator orthogonalizes the eigenvectors of the unitary. We implemented the method on the programming language model of quantum computation and tested it on a unitary matrix representing the time evolution operator of a small spin chain. All the eigenvalues of the operator were obtained sequentially. Another use of the first eigenvector from Abrams-Lloyd algorithm is preparing a state that is the uniform superposition of all the eigenvectors. This is possible by nonorthogonalizing the first eigenvector in all dimensions and then applying the Abrams-Lloyd algorithm steps stopping short of the last measurement.


2011 ◽  
Vol 84 (1) ◽  
Author(s):  
N. Zagury ◽  
A. Aragão ◽  
J. Casanova ◽  
E. Solano

Sign in / Sign up

Export Citation Format

Share Document