CASCADING FAILURES IN CONGESTED SCALE-FREE NETWORKS

2010 ◽  
Vol 21 (08) ◽  
pp. 991-999 ◽  
Author(s):  
JIAN-FENG ZHENG ◽  
LING-XIAO YANG ◽  
ZI-YOU GAO ◽  
BAI-BAI FU

In this work, we study the effect of congestion on the behavior of cascading failures in scale-free networks, where a capacity is assigned on each node (controlled by a tolerance parameter α), and traffic flows are governed by user equilibrium instead of going along the shortest paths. The effect of congestion can be described by link cost function, which denotes the time needed to travel along the link. Here we focus on studying the effect of link's practical capacity, which is a parameter in link cost function. Two different kinds of link's practical capacity are investigated, i.e. uniform case and nonuniform case. In the uniform case, each link has the same value of practical capacity. While in the nonuniform case, we assume that link's practical capacity and degrees of the link's endpoints are correlated (controlled by parameter θ, which governs the heterogeneity of link's practical capacity). Simulation results show that, in the uniform case, scale-free networks are more prone to cascading failures when increasing the value of link's practical capacity. In the nonuniform case, cascading failures in scale-free networks are very sensitive to α when θ > 0; while θ < 0, scale-free networks may suffer from serious cascading failures, regardless of α.

2009 ◽  
Vol 20 (02) ◽  
pp. 197-207 ◽  
Author(s):  
JIAN-FENG ZHENG ◽  
ZI-YOU GAO ◽  
BAI-BAI FU

In this work, we study the effects of scale-free topology and congestion on load distribution. Congestion effect can be described by link cost functions, which map link flows into travel times. Two different kinds of link's practical capacity (it is similar to link's capacity for transport) which is a parameter in link cost functions, i.e., uniform case and nonuniform case, are investigated. After introducing the effect of congestion, load distribution is typically discussed in Barábasi–Albert and Goh scale-free networks. In the uniform case, for Barábasi–Albert scale-free networks, we recover a power-law behavior for load distribution with a larger exponent, as compared with the distribution of betweenness centrality; for Goh scale-free networks, we also recover a power-law behavior and its exponent approaches to the exponent of degree distribution. While in the nonuniform case, the power-law behavior for load distribution may not always be conserved in both Barábasi–Albert and Goh scale-free networks. That is to say, different kinds of load distributions are obtained under different conditions. It may shed some light to study traffic dynamics on scale-free networks.


2019 ◽  
Vol 383 (7) ◽  
pp. 607-616 ◽  
Author(s):  
Zhengcheng Dong ◽  
Meng Tian ◽  
Yuxin Lu ◽  
Jingang Lai ◽  
Ruoli Tang ◽  
...  

2009 ◽  
Vol 20 (04) ◽  
pp. 585-595 ◽  
Author(s):  
JIAN-WEI WANG ◽  
LI-LI RONG

In this paper, adopting the initial load of a node j to be [Formula: see text], where kj is the degree of the node j and α is a tunable parameter that controls the strength of the initial load of a node, we propose a cascading model with a breakdown probability and explore cascading failures on a typical network, i.e., the Barabási–Albert (BA) network with scale-free property. Assume that a failed node leads only to a redistribution of the load passing through it to its neighboring nodes. According to the simulation results, we find that BA networks reach the strongest robustness level against cascading failures when α = 1 and the robustness of networks has a positive correlation with the average degree 〈k〉, not relating to the different breakdown probabilities. In addition, it is found that the robustness against cascading failures has an inversely proportional relationship with the breakdown probability of an overload node. Finally, the numerical simulations are verified by the theoretical analysis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0243801
Author(s):  
Yucheng Hao ◽  
Limin Jia ◽  
Yanhui Wang ◽  
Zhichao He

Many studies on cascading failures adopt the degree or the betweenness of a node to define its load. From a novel perspective, we propose an approach to obtain initial loads considering the harmonic closeness and the impact of neighboring nodes. Based on simulation results for different adjustable parameter θ, local parameter δ and proportion of attacked nodes f, it is found that in scale-free networks (SF networks), small-world networks (SW networks) and Erdos-Renyi networks (ER networks), there exists a negative correlation between optimal θ and δ. By the removal of the low load node, cascading failures are more likely to occur in some cases. In addition, we find a valuable result that our method yields better performance compared with other methods in SF networks with an arbitrary f, SW and ER networks with large f. Moreover, the method concerning the harmonic closeness makes these three model networks more robust for different average degrees. Finally, we perform the simulations on twenty real networks, whose results verify that our method is also effective to distribute the initial load in different real networks.


Sign in / Sign up

Export Citation Format

Share Document