CHAOS GENERATED FROM THE FRACTIONAL-ORDER COMPLEX CHEN SYSTEM AND ITS APPLICATION TO DIGITAL SECURE COMMUNICATION

2013 ◽  
Vol 24 (04) ◽  
pp. 1350025 ◽  
Author(s):  
CHAO LUO ◽  
XINGYUAN WANG

In this paper, a novel dynamic system, the fractional-order complex Chen system, is presented for the first time. Dynamic behaviors of system are studied analytically and numerically. Different routes to chaos are shown, and diverse kinds of motions are identified and exhibited by means of bifurcation diagram, portrait phase and the largest Lyapunov exponent. Secondly, an application to digital secure communication based on the novel system is proposed, in which security is enhanced by continually switching different orders of derivative in an irregular pattern. Furthermore, making full use of the advantage of high-capacity transmission of complex system, the improved digital secure communication scheme is achieved based on hybrid synchronization in coupled fractional-order complex Chen system, that means anti-synchronization in real part of state variables and projective synchronization in imaginary part, respectively. The corresponding numerical simulations demonstrate the effectiveness and feasibility of the proposed schemes.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Junbiao Guan ◽  
Kaihua Wang

A new fractional-order chaotic system is addressed in this paper. By applying the continuous frequency distribution theory, the indirect Lyapunov stability of this system is investigated based on sliding mode control technique. The adaptive laws are designed to guarantee the stability of the system with the uncertainty and external disturbance. Moreover, the modified generalized projection synchronization (MGPS) of the fractional-order chaotic systems is discussed based on the stability theory of fractional-order system, which may provide potential applications in secure communication. Finally, some numerical simulations are presented to show the effectiveness of the theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Liping Chen ◽  
Shanbi Wei ◽  
Yi Chai ◽  
Ranchao Wu

Projective synchronization between two different fractional-order chaotic systems with fully unknown parameters for drive and response systems is investigated. On the basis of the stability theory of fractional-order differential equations, a suitable and effective adaptive control law and a parameter update rule for unknown parameters are designed, such that projective synchronization between the fractional-order chaotic Chen system and the fractional-order chaotic Lü system with unknown parameters is achieved. Theoretical analysis and numerical simulations are presented to demonstrate the validity and feasibility of the proposed method.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 481 ◽  
Author(s):  
Zhonghui Li ◽  
Tongshui Xia ◽  
Cuimei Jiang

By designing a state observer, a new type of synchronization named complex modified projective synchronization is investigated in a class of nonlinear fractional-order complex chaotic systems. Combining stability results of the fractional-order systems and the pole placement method, this paper proves the stability of fractional-order error systems and realizes complex modified projective synchronization. This method is so effective that it can be applied in engineering. Additionally, the proposed synchronization strategy is suitable for all fractional-order chaotic systems, including fractional-order hyper-chaotic systems. Finally, two numerical examples are studied to show the correctness of this new synchronization strategy.


2019 ◽  
Vol 30 (07) ◽  
pp. 1940013
Author(s):  
Darui Zhu ◽  
Rui Wang ◽  
Chongxin Liu ◽  
Jiandong Duan

This paper presents an adaptive projective pinning control method for fractional-order complex network. First, based on theories of complex network and fractional calculus, some preliminaries of mathematics are given. Then, an analysis is conducted on the adaptive projective pinning control theory for fractional-order complex network. Based on the projective synchronization control method and the combined adaptive pinning feedback control method, suitable projection synchronization scale factor, adaptive feedback controller and the node selection algorithm are designed to illustrate the synchronization for fractional-order hyperchaotic complex network. Simulation results show that all nodes are stabilized to equilibrium point. Theoretical analysis and simulation results demonstrate that the designed adaptive projective pinning controllers are efficient.


Sign in / Sign up

Export Citation Format

Share Document