Maximal length cellular automata in GF(q) and pseudo-random number generation

2020 ◽  
Vol 31 (03) ◽  
pp. 2050037
Author(s):  
Sumit Adak ◽  
Kamalika Bhattacharjee ◽  
Sukanta Das

This work explores the randomness quality of maximal length cellular automata (CAs) in GF([Formula: see text]), where [Formula: see text]. A greedy strategy is chosen to select the candidate CAs which satisfy unpredictability criterion essential for a good pseudo-random number generator (PRNG). Then, performance of these CAs as PRNGs is empirically analyzed by using Diehard battery of tests. It is observed that, up to GF(11), increase in [Formula: see text] improves randomness quality of the CAs, but after that, it saturates. Finally, we propose an implementable design of a good PRNG based on a 13-cell maximal length cellular automaton over GF(11) which can compete with the existing well-known PRNGs.

2017 ◽  
Vol 28 (06) ◽  
pp. 1750078 ◽  
Author(s):  
Kamalika Bhattacharjee ◽  
Dipanjyoti Paul ◽  
Sukanta Das

This paper investigates the potentiality of pseudo-random number generation of a 3-neighborhood 3-state cellular automaton (CA) under periodic boundary condition. Theoretical and empirical tests are performed on the numbers, generated by the CA, to observe the quality of it as pseudo-random number generator (PRNG). We analyze the strength and weakness of the proposed PRNG and conclude that the selected CA is a good random number generator.


2020 ◽  
Vol 8 (6) ◽  
pp. 5741-5748

This paper proposes a hybrid programmable two-dimensional Cellular Automata (CA) based pseudo-random number generator which includes a newly designed rule set. The properties and evolution of one and two dimensional CA are revisited. The various metrics for evaluating CA as a Pseudo-Random Number Generator (PRNG) are discussed. It is proved that the randomness is high irrespective of the initial seed by applying this newly designed rule set. The PRNG is tested against a popular statistical test called Diehard test suite and the results show that the PRNG is highly random. The chaotic measures like entropy, hamming distance and cycle length have been measured


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1869 ◽  
Author(s):  
Luca Baldanzi ◽  
Luca Crocetti ◽  
Francesco Falaschi ◽  
Matteo Bertolucci ◽  
Jacopo Belli ◽  
...  

In the context of growing the adoption of advanced sensors and systems for active vehicle safety and driver assistance, an increasingly important issue is the security of the information exchanged between the different sub-systems of the vehicle. Random number generation is crucial in modern encryption and security applications as it is a critical task from the point of view of the robustness of the security chain. Random numbers are in fact used to generate the encryption keys to be used for ciphers. Consequently, any weakness in the key generation process can potentially leak information that can be used to breach even the strongest cipher. This paper presents the architecture of a high performance Random Number Generator (RNG) IP-core, in particular a Cryptographically Secure Pseudo-Random Number Generator (CSPRNG) IP-core, a digital hardware accelerator for random numbers generation which can be employed for cryptographically secure applications. The specifications used to develop the proposed project were derived from dedicated literature and standards. Subsequently, specific architecture optimizations were studied to achieve better timing performance and very high throughput values. The IP-core has been validated thanks to the official NIST Statistical Test Suite, in order to evaluate the degree of randomness of the numbers generated in output. Finally the CSPRNG IP-core has been characterized on relevant Field Programmable Gate Array (FPGA) and ASIC standard-cell technologies.


Author(s):  
M. A. BAEVA ◽  

In this article, the author considers various types of pseudo-random sequence generators, their distinctive properties. The article provides formulas for calculating the next member of the sequence, knowing the previous ones. The main functions and properties are considered that make it possible to evaluate the quality of the generation of pseudo-random sequences, and based on the analysis performed, the most successful variant of the pseudo-random number generator is selected taking into account the requirements.


Sign in / Sign up

Export Citation Format

Share Document