SEMI-ONLINE MACHINE COVERING

2007 ◽  
Vol 24 (03) ◽  
pp. 373-382 ◽  
Author(s):  
SHENG-YI CAI

This paper investigates two different semi-online versions of the machine covering, which is the problem of assigning a set of jobs to a system of m(m ≥ 3) identical parallel machines so as to maximize the earliest machine completion time. In the first case, we assume that the largest processing times is known in advance. In the second case, we assume that the total processing times of all jobs is known in advance. For each version we propose a semi-online algorithm and investigate its competitive ratio. The competitive ratio of each algorithm is [Formula: see text], which is shown to be the best possible competitive ratio for each semi-online problem.

2018 ◽  
Vol 35 (04) ◽  
pp. 1850024
Author(s):  
Wenjie Li ◽  
Hailing Liu ◽  
Shisheng Li

This paper studies online scheduling on [Formula: see text] identical parallel machines under the KRT environment, where jobs arrive over time and “KRT” means that in the online setting no jobs can be released when all of the machines are busy. The goal is to determine a feasible schedule to minimize the total of weighted completion times. When [Formula: see text], we prove that WSPT is an optimal online algorithm. When [Formula: see text], we first present a lower bound [Formula: see text], and then show that WSPT is a 2-competitive online algorithm for the case [Formula: see text]. For the case in which [Formula: see text] and all jobs have equal processing times, we provide a best possible online algorithm with a competitive ratio of [Formula: see text].


2014 ◽  
Vol 25 (06) ◽  
pp. 745-761 ◽  
Author(s):  
LIN CHEN ◽  
DESHI YE ◽  
GUOCHUAN ZHANG

We consider the online scheduling problem in a CPU-GPU cluster. In this problem there are two sets of processors, the CPU processors and the GPU processors. Each job has two distinct processing times, one for the CPU processor and the other for the GPU processor. Once a job is released, a decision should be made immediately about which processor it should be assigned to. The goal is to minimize the makespan, i.e., the largest completion time among all the processors. Such a problem could be seen as an intermediate model between the scheduling problem on identical machines and unrelated machines. We provide a 3.85-competitive online algorithm for this problem and show that no online algorithm exists with competitive ratio strictly less than 2. We also consider two special cases of this problem, the balanced case where the number of CPU processors equals to that of GPU processors, and the one-sided case where there is only one CPU or GPU processor. For the balanced case, we first provide a simple 3-competitive algorithm, and then a better algorithm with competitive ratio of 2.732 is derived. For the one-sided case, a 3-competitive algorithm is given.


2016 ◽  
Vol 33 (04) ◽  
pp. 1650027
Author(s):  
Lele Zhang ◽  
Andrew Wirth

We consider the problem of online scheduling a single machine with family setups under job availability. A setup must be scheduled when the next job comes from a different family from the last completed one, if any. The aim is to minimize the total completion time of all jobs. For the special case of identical processing times, we provide a lower bound for the competitive ratio and an online algorithm with its competitive analysis.


Algorithmica ◽  
2021 ◽  
Author(s):  
Matthias Englert ◽  
David Mezlaf ◽  
Matthias Westermann

AbstractIn the classic minimum makespan scheduling problem, we are given an input sequence of n jobs with sizes. A scheduling algorithm has to assign the jobs to m parallel machines. The objective is to minimize the makespan, which is the time it takes until all jobs are processed. In this paper, we consider online scheduling algorithms without preemption. However, we allow the online algorithm to change the assignment of up to k jobs at the end for some limited number k. For m identical machines, Albers and Hellwig (Algorithmica 79(2):598–623, 2017) give tight bounds on the competitive ratio in this model. The precise ratio depends on, and increases with, m. It lies between 4/3 and $$\approx 1.4659$$ ≈ 1.4659 . They show that $$k = O(m)$$ k = O ( m ) is sufficient to achieve this bound and no $$k = o(n)$$ k = o ( n ) can result in a better bound. We study m uniform machines, i.e., machines with different speeds, and show that this setting is strictly harder. For sufficiently large m, there is a $$\delta = \varTheta (1)$$ δ = Θ ( 1 ) such that, for m machines with only two different machine speeds, no online algorithm can achieve a competitive ratio of less than $$1.4659 + \delta $$ 1.4659 + δ with $$k = o(n)$$ k = o ( n ) . We present a new algorithm for the uniform machine setting. Depending on the speeds of the machines, our scheduling algorithm achieves a competitive ratio that lies between 4/3 and $$\approx 1.7992$$ ≈ 1.7992 with $$k = O(m)$$ k = O ( m ) . We also show that $$k = \varOmega (m)$$ k = Ω ( m ) is necessary to achieve a competitive ratio below 2. Our algorithm is based on maintaining a specific imbalance with respect to the completion times of the machines, complemented by a bicriteria approximation algorithm that minimizes the makespan and maximizes the average completion time for certain sets of machines.


2014 ◽  
Vol 31 (04) ◽  
pp. 1450030 ◽  
Author(s):  
CHENGWEN JIAO ◽  
WENHUA LI ◽  
JINJIANG YUAN

We consider online scheduling of unit length jobs on m identical parallel-batch machines. Jobs arrive over time. The objective is to minimize maximum flow-time, with the flow-time of a job being the difference of its completion time and its release time. A parallel-batch machine can handle up to b jobs simultaneously as a batch. Here, the batch capacity is bounded, that is b < ∞. In this paper, we provide a best possible online algorithm for the problem with a competitive ratio of [Formula: see text].


2018 ◽  
Vol 35 (06) ◽  
pp. 1850048
Author(s):  
Xing Chai ◽  
Lingfa Lu ◽  
Wenhua Li ◽  
Liqi Zhang

In this paper, we consider the online single machine scheduling problem to minimize the maximum weighted completion time of the jobs. For the preemptive problem, we show that the LW (Largest Weight first) rule yields an optimal schedule. For the non-preemptive problem, Li [Li, W (2015). A best possible online algorithm for the parallel-machine scheduling to minimize the maximum weighted completion time. Asia-Pacific Journal of Operational Research, 32(4), 1550030 (10 pages)] presented a lower bound 2, and then provided an online algorithm with a competitive ratio of 3. In this paper, we present two online algorithms with the best-possible competitive ratio of [Formula: see text] for the non-preemptive problem.


Sign in / Sign up

Export Citation Format

Share Document