Fritz John Optimality Conditions for Interval-valued Multi-objective Functions using gH-Symmetrical Derivative

Author(s):  
Sachin Rastogi ◽  
Akhlad Iqbal ◽  
Sanjeev Rajan
Author(s):  
Leila Younsi-Abbaci ◽  
Mustapha Moulaï

In this paper, we consider a Multi-Objective Stochastic Interval-Valued Linear Fractional Integer Programming problem (MOSIVLFIP). We especially deal with a multi-objective stochastic fractional problem involving an inequality type of constraints, where all quantities on the right side are log-normal random variables, and the objective functions coefficients are fractional intervals. The proposed solving procedure is divided in three steps. In the first one, the probabilistic constraints are converted into deterministic ones by using the chance constrained programming technique. Then, the second step consists of transforming the studied problem objectives on an optimization problem with an interval-valued objective functions. Finally, by introducing the concept of weighted sum method, the equivalent converted problem obtained from the two first steps is transformed into a single objective deterministic fractional problem. The effectiveness of the proposed procedure is illustrated through a numerical example.


2020 ◽  
Vol 19 ◽  

This Article deals with the Approximate Karush-Kuhn-Tucker (AKKT) optimality conditions for interval valued multiobjective function as a generalization of Karush-Kuhn-Tucker optimality conditions. Further, we establish relationship between vector variational inequality problems and multiobjective interval valued optimization problems under the assumption of LU−convex smooth and nonsmooth objective functions.


2021 ◽  
Vol 2 (5) ◽  
pp. 7902-7911
Author(s):  
Johnny Moisés Valverde Montoro ◽  
Milton Milciades Cortez Gutiérrez ◽  
Hernán Oscar Cortez Gutiérrez

The present investigation responds to the need to solve optimization problems with optimality conditions. The KKT conditions are considered for multiobjective optimization problems with interval-valued objective functions.


2020 ◽  
Vol 39 (5) ◽  
pp. 6339-6350
Author(s):  
Esra Çakır ◽  
Ziya Ulukan

Due to the increase in energy demand, many countries suffer from energy poverty because of insufficient and expensive energy supply. Plans to use alternative power like nuclear power for electricity generation are being revived among developing countries. Decisions for installation of power plants need to be based on careful assessment of future energy supply and demand, economic and financial implications and requirements for technology transfer. Since the problem involves many vague parameters, a fuzzy model should be an appropriate approach for dealing with this problem. This study develops a Fuzzy Multi-Objective Linear Programming (FMOLP) model for solving the nuclear power plant installation problem in fuzzy environment. FMOLP approach is recommended for cases where the objective functions are imprecise and can only be stated within a certain threshold level. The proposed model attempts to minimize total duration time, total cost and maximize the total crash time of the installation project. By using FMOLP, the weighted additive technique can also be applied in order to transform the model into Fuzzy Multiple Weighted-Objective Linear Programming (FMWOLP) to control the objective values such that all decision makers target on each criterion can be met. The optimum solution with the achievement level for both of the models (FMOLP and FMWOLP) are compared with each other. FMWOLP results in better performance as the overall degree of satisfaction depends on the weight given to the objective functions. A numerical example demonstrates the feasibility of applying the proposed models to nuclear power plant installation problem.


2006 ◽  
Vol 34 (3) ◽  
pp. 170-194 ◽  
Author(s):  
M. Koishi ◽  
Z. Shida

Abstract Since tires carry out many functions and many of them have tradeoffs, it is important to find the combination of design variables that satisfy well-balanced performance in conceptual design stage. To find a good design of tires is to solve the multi-objective design problems, i.e., inverse problems. However, due to the lack of suitable solution techniques, such problems are converted into a single-objective optimization problem before being solved. Therefore, it is difficult to find the Pareto solutions of multi-objective design problems of tires. Recently, multi-objective evolutionary algorithms have become popular in many fields to find the Pareto solutions. In this paper, we propose a design procedure to solve multi-objective design problems as the comprehensive solver of inverse problems. At first, a multi-objective genetic algorithm (MOGA) is employed to find the Pareto solutions of tire performance, which are in multi-dimensional space of objective functions. Response surface method is also used to evaluate objective functions in the optimization process and can reduce CPU time dramatically. In addition, a self-organizing map (SOM) proposed by Kohonen is used to map Pareto solutions from high-dimensional objective space onto two-dimensional space. Using SOM, design engineers see easily the Pareto solutions of tire performance and can find suitable design plans. The SOM can be considered as an inverse function that defines the relation between Pareto solutions and design variables. To demonstrate the procedure, tire tread design is conducted. The objective of design is to improve uneven wear and wear life for both the front tire and the rear tire of a passenger car. Wear performance is evaluated by finite element analysis (FEA). Response surface is obtained by the design of experiments and FEA. Using both MOGA and SOM, we obtain a map of Pareto solutions. We can find suitable design plans that satisfy well-balanced performance on the map called “multi-performance map.” It helps tire design engineers to make their decision in conceptual design stage.


Sign in / Sign up

Export Citation Format

Share Document