scholarly journals Doubly Special Relativity with Light-Cone Deformation

2003 ◽  
Vol 18 (24) ◽  
pp. 1711-1719 ◽  
Author(s):  
A. Błaut ◽  
M. Daszkiewicz ◽  
J. Kowalski-Glikman

We propose a new Doubly Special Relativity theory based on the generalization of the κ-deformation of the Poincaré algebra acting along one of the null directions. We recall the quantum Hopf structure of such deformed Poincaré algebra and use it to derive the phase space commutation relations. As in the DSR based on the standard quantum κ-Poincaré algebra we find that the spacetime is noncommutative. We investigate the fate of the properties of Special Relativity in the null basis: the split of the algebra of Lorentz and momentum generators into kinematical and dynamical parts, the action of the kinematical boost M+-, and the emergence of the two-dimensional Galilean symmetry.

2003 ◽  
Vol 12 (07) ◽  
pp. 1211-1226 ◽  
Author(s):  
GIOVANNI AMELINO-CAMELIA

Among the possible explanations for the puzzling observations of cosmic rays above the GZK cutoff there is growing interest in the ones that represent kinematical solutions, based either on general formulations of particle physics with small violations of Lorentz symmetry or on a quantum-gravity-motivated scheme for the breakdown of Lorentz symmetry. An unappealing aspect of these cosmic-ray-puzzle solutions is that they require the existence of a preferred class of inertial observers. Here I propose a new kinematical solution of the cosmic-ray puzzle, which does not require the existence of a preferred class of inertial observers. My proposal is a new example of a type of relativistic theories, the so-called "doubly-special-relativity" theories, which have already been studied extensively over the last two years. The core ingredient of the proposal is a deformation of Lorentz transformations in which also the Planck scale Ep (in addition to the speed-of-light scale c) is described as an invariant. Just like the introduction of the invariant c requires a deformation of the Galileian transformations into the Lorentz transformations, the introduction of the invariant Ep requires a deformation of the Lorentz transformations, but there is no special class of inertial observers. The Pierre Auger Observatory and the GLAST space telescope should play a key role in future developments of these investigations. I also emphasize that the doubly-special-relativity theory here proposed, besides providing a solution for the cosmic-ray puzzle, is also the first doubly-special-relativity theory with a natural description of macroscopic bodies, and may find applications in the context of a recently-proposed dark-energy scenario.


Sign in / Sign up

Export Citation Format

Share Document