scholarly journals THE SCHWARZSCHILD'S BRANEWORLD SOLUTION

2010 ◽  
Vol 25 (39) ◽  
pp. 3323-3334 ◽  
Author(s):  
J. OVALLE

In the context of the Randall–Sundrum braneworld, the minimal geometric deformation approach, which has been successfully used to generate exact interior solutions to Einstein's field equations for static braneworld stars with local and nonlocal bulk terms, is used to obtain the braneworld version of the Schwarzschild's interior solution. Using this new solution, the behavior of the Weyl functions is elucidated in terms of the compactness for different stellar distributions.

2021 ◽  
Vol 81 (9) ◽  
Author(s):  
S. K. Maurya ◽  
Anirudh Pradhan ◽  
Francisco Tello-Ortiz ◽  
Ayan Banerjee ◽  
Riju Nag

AbstractIn this article, we develop a theoretical framework to study compact stars in Einstein gravity with the Gauss–Bonnet (GB) combination of quadratic curvature terms. We mainly analyzed the dependence of the physical properties of these compact stars on the Gauss–Bonnet coupling strength. This work is motivated by the relations that appear in the framework of the minimal geometric deformation approach to gravitational decoupling (MGD-decoupling), we establish an exact anisotropic version of the interior solution in Einstein–Gauss–Bonnet gravity. In fact, we specify a particular form for gravitational potentials in the MGD approach that helps us to determine the decoupling sector completely and ensure regularity in interior space-time. The interior solutions have been (smoothly) joined with the Boulware–Deser exterior solution for 5D space-time. In particular, two different solutions have been reported which comply with the physically acceptable criteria: one is the mimic constraint for the pressure and the other approach is the mimic constraint for density. We present our solution both analytically and graphically in detail.


Author(s):  
Nils Andersson

This chapter provides an overview of Einstein’s geometric theory of gravity – general relativity. It introduces the mathematics required to model the motion of objects in a curved spacetime and provides an intuitive derivation of Einstein’s field equations.


Sign in / Sign up

Export Citation Format

Share Document