bonnet gravity
Recently Published Documents


TOTAL DOCUMENTS

434
(FIVE YEARS 166)

H-INDEX

45
(FIVE YEARS 12)

2022 ◽  
Vol 2022 (01) ◽  
pp. 015
Author(s):  
M. Bousder

Abstract The present work is devoted to studying the dynamical evolution of galaxies in scalar-Gauss-Bonnet gravity and its relationship with the MOND paradigm. This study is useful for giving meaning to the presence of a new gravitational constant. The stability of dark matter is strongly dependent on matter density. We are interested in calculating the maximum rotational velocity of galaxies. We show that rotating galaxies can be described by a new parameter that depends both on the minimum value of scalar fields and on the effective mass of this field. According to observational data, we have shown that this parameter is a constant.


Author(s):  
Banafsheh Shiralilou ◽  
Tanja Hinderer ◽  
Samaya Nissanke ◽  
Nestor Ortiz ◽  
Helvi Witek

Abstract Gravitational waves emitted by black hole binary inspiral and mergers enable unprecedented strong-field tests of gravity, requiring accurate theoretical modelling of the expected signals in extensions of General Relativity. In this paper we model the gravitational wave emission of inspiralling binaries in scalar Gauss-Bonnet gravity theories. Going beyond the weak-coupling approximation, we derive the gravitational waveform to relative first post-Newtonian order beyond the quadrupole approximation and calculate new contributions from nonlinear curvature terms. We also compute the scalar waveform to relative 0.5PN order beyond the leading -0.5PN order terms. We quantify the effect of these terms and provide ready-to-implement gravitational wave and scalar waveforms as well as the Fourier domain phase for quasi-circular binaries. We also perform a parameter space study, which indicates that the values of black hole scalar charges play a crucial role in the detectability of deviation from General Relativity. We also compare the scalar waveforms to numerical relativity simulations to assess the impact of the relativistic corrections to the scalar radiation. Our results provide important foundations for future precision tests of gravity.


2021 ◽  
pp. 100918
Author(s):  
Y. Mina Ghodsi ◽  
Aryan Behnamfard ◽  
Saeed Fakhry ◽  
Javad T. Firouzjaee
Keyword(s):  

Author(s):  
Wajiha Javed ◽  
Muhammad Aqib ◽  
Ali Övgün

The objective of this paper is to analyze the weak deflection angle of Einstein-Gauss-Bonnet gravity in the presence of plasma medium. To attain our results, we implement the Gibbons and Werner approach and use the Gauss-Bonnet theorem to Einstein gravity to acquire the resulting deflection angle of photon's ray in the weak field limit. Moreover, we illustrate the behavior of plasma medium and non-plasma mediums on the deflection of photon's ray in the framework of Einstein-Gauss-Bonnet gravity. Similarly, we observe the graphical influences of deflection angle on Einstein-Gauss-Bonnet gravity with the consideration of both plasma and non-plasma mediums. Later, we observe the rigorous bounds phenomenon of the greybody factor in contact with Einstein-Gauss-Bonnet gravity and calculate the outcomes, analyze graphically for specific values of parameters.


2021 ◽  
Vol 36 (32) ◽  
Author(s):  
S. K. Maurya ◽  
Anirudh Pradhan ◽  
Ayan Banerjee ◽  
Francisco Tello-Ortiz ◽  
M. K. Jasim

In astronomy, the study of compact stellar remnants — white dwarfs, neutron stars, black holes — has attracted much attention for addressing fundamental principles of physics under extreme conditions in the core of compact objects. In a recent argument, Maurya et al. [Eur. Phys. J. C 77, 45 (2017)] have proposed an exact solution depending on a specific spacetime geometry. Here, we construct equilibrium configurations of compact stars for the same spacetime that make it interesting for modeling high density physical astronomical objects. All calculations are carried out within the framework of the five-dimensional Einstein–Gauss–Bonnet gravity. Our main interest is to explore the dependence of the physical properties of these compact stars depending on the Gauss–Bonnet coupling constant. The interior solutions have been matched to an exterior Boulware–Deser solution for [Formula: see text] spacetime. Our finding ensures that all energy conditions hold, and the speed of sound remains causal, everywhere inside the star. Moreover, we study the dynamical stability of stellar structure by taking into account the modified field equations using the theory of adiabatic radial oscillations developed by Chandrasekhar. Based on the observational data for radii and masses coming from different astronomical sources, we show that our model is compatible and physically relevant.


Sign in / Sign up

Export Citation Format

Share Document