SCHRÖDINGER EQUATION FOR QUANTUM FRACTAL SPACE–TIME OF ORDER n VIA THE COMPLEX-VALUED FRACTIONAL BROWNIAN MOTION

2001 ◽  
Vol 16 (31) ◽  
pp. 5061-5084 ◽  
Author(s):  
GUY JUMARIE

First remark: Feynman's discovery in accordance of which quantum trajectories are of fractal nature (continuous everywhere but nowhere differentiable) suggests describing the dynamics of such systems by explicitly introducing the Brownian motion of fractional order in their equations. The second remark is that, apparently, it is only in the complex plane that the Brownian motion of fractional order with independent increments can be generated, by using random walks defined with the complex roots of the unity; in such a manner that, as a result, the use of complex variables would be compulsory to describe quantum systems. Here one proposes a very simple set of axioms in order to expand the consequences of these remarks. Loosely speaking, a one-dimensional system with real-valued coordinate is in fact the average observation of a one-dimensional system with complex-valued coordinate: It is a strip modeling. Assuming that the system is governed by a stochastic differential equation driven by a complex valued fractional Brownian of order n, one can then obtain the explicit expression of the corresponding covariant stochastic derivative with respect to time, whereby we switch to the extension of Lagrangian mechanics. One can then derive a Schrödinger equation of order n in quite a direct way. The extension to relativistic quantum mechanics is outlined, and a generalized Klein–Gordon equation of order n is obtained. As a by-product, one so obtains a new proof of the Schrödinger equation.

1992 ◽  
Vol 70 (12) ◽  
pp. 1261-1266 ◽  
Author(s):  
M. R. M. Witwit ◽  
J. P. Killingbeck

The energy levels of a one-dimensional system are calculated for the rational potentials, [Formula: see text] and [Formula: see text], with (2L = 4, 6). We use the hypervirial method and Padé approximants over a wide range of values of the perturbation parameters (α, g, λ) and for various states. The numerical results agree with those of previous workers where they are available.


Author(s):  
Nakao Hayashi ◽  
Pavel I. Naumkin

AbstractWe study the large time asymptotics of solutions to the Cauchy problem for the nonlinear nonlocal Schrödinger equation with critical nonlinearity $$\begin{aligned} \left\{ \begin{array}{l} i\partial _{t}\left( u-\partial _{x}^{2}u\right) +\partial _{x}^{2}u-a\partial _{x}^{4}u=\lambda \left| u\right| ^{2}u,\text { } t>0,{\ }x\in {\mathbb {R}}\mathbf {,} \\ u\left( 0,x\right) =u_{0}\left( x\right) ,{\ }x\in {\mathbb {R}}\mathbf {,} \end{array} \right. \end{aligned}$$ i ∂ t u - ∂ x 2 u + ∂ x 2 u - a ∂ x 4 u = λ u 2 u , t > 0 , x ∈ R , u 0 , x = u 0 x , x ∈ R , where $$a>\frac{1}{5},$$ a > 1 5 , $$\lambda \in {\mathbb {R}}$$ λ ∈ R . We continue to develop the factorization techniques which was started in papers Hayashi and Naumkin (Z Angew Math Phys 59(6):1002–1028, 2008) for Klein–Gordon, Hayashi and Naumkin (J Math Phys 56(9):093502, 2015) for a fourth-order Schrödinger, Hayashi and Kaikina (Math Methods Appl Sci 40(5):1573–1597, 2017) for a third-order Schrödinger to show the modified scattering of solutions to the equation. The crucial points of our approach presented here are based on the $${\mathbf {L}}^{2}$$ L 2 -boundedness of the pseudodifferential operators.


Author(s):  
Frank S. Levin

Chapter 7 illustrates the results obtained by applying the Schrödinger equation to a simple pedagogical quantum system, the particle in a one-dimensional box. The wave functions are seen to be sine waves; their wavelengths are evaluated and used to calculate the quantized energies via the de Broglie relation. An energy-level diagram of some of the energies is constructed; on it are illustrations of the corresponding wave functions and probability distributions. The wave functions are seen to be either symmetric or antisymmetric about the midpoint of the line representing the box, thereby providing a lead-in to the later exploration of certain symmetry properties of multi-electron atoms. It is next pointed out that the Schrödinger equation for this system is identical to Newton’s equation describing the vibrations of a stretched musical string. The different meaning of the two solutions is discussed, as is the concept and structure of linear superpositions of them.


2012 ◽  
Vol 26 (15) ◽  
pp. 1250057
Author(s):  
HE LI ◽  
XIANG-HUA MENG ◽  
BO TIAN

With the coupling of a scalar field, a generalization of the nonlinear Klein–Gordon equation which arises in the relativistic quantum mechanics and field theory, i.e., the coupled nonlinear Klein–Gordon equations, is investigated via the Hirota method. With the truncated Painlevé expansion at the constant level term with two singular manifolds, the coupled nonlinear Klein–Gordon equations are transformed to a bilinear form. Starting from the bilinear form, with symbolic computation, we obtain the N-soliton solutions for the coupled nonlinear Klein–Gordon equations.


Sign in / Sign up

Export Citation Format

Share Document