SPECKLE STATISTICS IN THE PHOTON LOCALIZATION TRANSITION

2010 ◽  
Vol 24 (12n13) ◽  
pp. 1950-1988 ◽  
Author(s):  
Azriel Z. Genack ◽  
Jing Wang

We review the statistics of speckle in the Anderson localization transition for classical waves. Probability distributions of local and integrated transmission and of the evolution of the structure of the speckle pattern are related to their corresponding correlation functions. Steady state and pulse transport can be described in terms of modes whose speckle patterns are obtained by decomposing the frequency variation of the transmitted field. At the same time, transmission can be purposefully manipulated by adjusting the incident field and the eigenchannels of the transmission matrix can be found by analyzing sets of speckle patterns for different inputs. The many aspects of steady state propagation are reflected in diverse, but simply related, parameters so that a single localization parameter encapsulates the character of transport on both sides of the divide separating localized from diffusive waves.

2002 ◽  
Vol 12 (9) ◽  
pp. 3-8
Author(s):  
M. Sutton ◽  
Y. Li ◽  
J. D. Brock ◽  
R. E. Thorne

An introduction to X-ray Intensity Fluctuation Spectroscopy (XIFS) is given by describing its relationship to speckle from coherent sources. A brief description of the relationship of XIFS measurements to the underlying equations of motion is given. Preliminary results for the charge density wave (CDW) system NbSe3 are then presented. Static speckle patterns are shown for the $\overrightarrow {Q}_1 = (0 .76$ 0) CDW peak showing that XIFS experiments are possible in this systom provided time constants are long enough. For electrical currents below threshold, a static speckle pattern is observed but for currents above threshold the speckles are smeared out showing movement of the CDW. It is also shown that above threshold, the longitudinal correlation length decreases.


1986 ◽  
Vol 8 (3) ◽  
pp. 151-164 ◽  
Author(s):  
G.E. Trahey ◽  
J.W. Allison ◽  
S.W. Smith ◽  
O.T. von Ramm

Coherent speckle is a source of image noise in ultrasonic B-mode imaging. The use of multiple imaging frequencies has been suggested as a technique for speckle contrast reduction. This technique involves the averaging of images whose speckle patterns have been modified by a change in the spectrum of the transmitted or received acoustical pulse. We have measured the rate of this speckle pattern change in ultrasonic images as a function of the change in center frequency of the transmitted acoustical pulse. This data is used to quantitatively describe the trade-off of resolution loss versus speckle reduction encountered when frequency compounding is employed and to derive the optimal method of frequency compounding. These results are then used as a basis for describing the overall advisability of frequency compounding in ultrasonic imaging systems. Our analysis indicates that simple frequency compounding is counterproductive in improving image quality.


2021 ◽  
Vol 929 ◽  
Author(s):  
M. Ungarish

Previous studies have extended Benjamin's theory for an inertial steady-state gravity current of density $\rho _{c}$ in a homogeneous ambient fluid of density $\rho _{o} < \rho _{c}$ to the counterpart propagation in a linearly stratified (Boussinesq) ambient (density decreases from $\rho _b$ to $\rho _{o}$ ). The extension is typified by the parameter $S = (\rho _{b}-\rho _{o})/(\rho _{c}-\rho _{o}) \in (0,1]$ , uses Long's solution for the flow over a topography to model the flow of the ambient over the gravity current, and reduces well to the classical theory for small and moderate values of $S$ . However, for $S=1$ , i.e. $\rho _b = \rho _c$ , which corresponds to a symmetric intrusion, various idiosyncrasies appear. Here attention is focused on this case. The control-volume analysis (balance of volume, mass, momentum and vorticity) produces a fairly compact analytical formulation, pending a closure for the head loss, and subject to stability criteria (no inverse stratification downstream). However, we show that plausible closures that work well for the non-stratified current (like zero head loss on the stagnation line, or zero vorticity diffusion) do not produce satisfactory results for the intrusion (except for some small ranges of the height ratio of current to channel, $a = h/H$ ). The reasons and insights are discussed. Accurate data needed for comparison with the theoretical model are scarce, and a message of this paper is that dedicated experiments and simulations are needed for the clarification and improvement of the theory.


2019 ◽  
Vol 99 (22) ◽  
Author(s):  
Sthitadhi Roy ◽  
David E. Logan ◽  
J. T. Chalker

1980 ◽  
Vol 12 (03) ◽  
pp. 799-823
Author(s):  
Per Hokstad

The many-server queue with service time having rational Laplace transform of order 2 is considered. An expression for the asymptotic queue-length distribution is obtained. A relatively simple formula for the mean queue length is also found. A few numerical results on the mean queue length and on the probability of having to wait are given for the case of three servers. Some approximations for these quantities are also considered.


Sign in / Sign up

Export Citation Format

Share Document