speckle patterns
Recently Published Documents


TOTAL DOCUMENTS

642
(FIVE YEARS 124)

H-INDEX

36
(FIVE YEARS 3)

2022 ◽  
Vol 149 ◽  
pp. 107820
Author(s):  
Haoran Li ◽  
Xiaoyan Wu ◽  
Guodong Liu ◽  
R.V. Vinu ◽  
Xiaoyan Wang ◽  
...  
Keyword(s):  

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Zeev Kalyuzhner ◽  
Sergey Agdarov ◽  
Itai Orr ◽  
Yafim Beiderman ◽  
Aviya Bennett ◽  
...  

AbstractNeural activity research has recently gained significant attention due to its association with sensory information and behavior control. However, the current methods of brain activity sensing require expensive equipment and physical contact with the tested subject. We propose a novel photonic-based method for remote detection of human senses. Physiological processes associated with hemodynamic activity due to activation of the cerebral cortex affected by different senses have been detected by remote monitoring of nano‐vibrations generated by the transient blood flow to the specific regions of the human brain. We have found that a combination of defocused, self‐interference random speckle patterns with a spatiotemporal analysis, using Deep Neural Network, allows associating between the activated sense and the seemingly random speckle patterns.


2021 ◽  
Author(s):  
Hongki Lee ◽  
Joel Berk ◽  
Aaron Webster ◽  
Donghyun Kim ◽  
Matthew R Foreman

Abstract We report sensing of single nanoparticles using disordered metallic nanoisland substrates supporting surface plasmon polaritons (SPPs). Speckle patterns arising from leakage radiation of elastically scattered SPPs provides a unique fingerprint of the scattering microstructure at the sensor surface. Experimental measurements of the speckle decorrelation are presented and shown to enable detection of sorption of individual gold nanoparticles and polystyrene beads. Our approach is verified through bright-field and fluorescence imaging of particles adhering to the nanoisland substrate.


2021 ◽  
Vol 2091 (1) ◽  
pp. 012009
Author(s):  
T V Blagova ◽  
I Sh Khasanov

Abstract Speckles are sensitive to the slightest inhomogeneities of the medium, which is used in optical research methods such as speckle interferometry. However, the stochastic nature of propagation of speckle fields complicates their accurate detection and processing. For example, aberrations in the optical system result in the decorrelation of the image of speckles with the actual speckles that are observed in free space. The report will consider the main types of wave aberrations of optical system and their influence on the correlation properties of speckle patterns. The research results can be used to optimize optical systems in which speckles play a significant role, for example, in classical ghost imaging.


Applied Nano ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 319-329
Author(s):  
Laurent Gravier ◽  
Yves Salvadé ◽  
Damien Pidoux ◽  
Julien Maritz ◽  
Marco Laratta

We report here the feasibility study of anti-counterfeiting low-cost nanostructured flexible security tags for the tracking of large-scale fabrication products, such as pharmaceuticals or original equipment manufacturers. The fabrication process makes use of the mature nanotechnology called Template Synthesis to shape thin track-etched polymer film into covert laser readable tags, combining random self-organized structures with organized patterns. Techniques are developed to drastically limit the number of fabrication steps and keep fabrication costs low, while opening to numerous adjustment parameters. A dedicated, simple optical setup is presented, to capture speckle images of such tags lightened up by light emitting diodes or laser beams. Speckle images are analyzed in terms of encoding parameters, found here quite numerous to ensure a large coding range of large-scale production batches. We particularly highlight ultra-dark areas in speckle images, where nanowire structures completely inhibit speckle patterns. This unique, high-contrast optical feature addresses these low-cost nanostructured thin films to provide a very promising solution for large-scale security tags.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6701
Author(s):  
Dmitry Zimnyakov ◽  
Marina Alonova ◽  
Ekaterina Ushakova ◽  
Sergey Volchkov ◽  
Olga Ushakova ◽  
...  

Microscopic structural rearrangements in expanding polylactide foams were probed using multiple dynamic scattering of laser radiation in the foam volume. Formation and subsequent expansion of polylactide foams was provided by a rapid or slow depressurization of the “plasticized polylactide–supercritical carbon dioxide” system. Dynamic speckles induced by a multiple scattering of laser radiation in the expanding foam were analyzed using the stacked speckle history technique, which is based on a joint mapping of spatial–temporal dynamics of evolving speckle patterns. A significant decrease in the depressurization rate in the case of transition from a rapid to slow foaming (from 0.03 MPa/s to 0.006 MPa/s) causes dramatic changes in the texture of the synthesized stacked speckle history maps. These changes are associated with transition from the boiling dynamics of time-varying speckles to their pronounced translational motions and are manifested as significant slopes of individual speckle traces on the recovered stacked speckle history maps. This feature is interpreted in terms of the actual absence of a new cell nucleation effect in the expanding foam upon slow depressurization on the dynamic scattering of laser radiation.


Sign in / Sign up

Export Citation Format

Share Document