ANALYTIC DARK SOLITON SOLUTIONS FOR A GENERALIZED VARIABLE-COEFFICIENT HIGHER-ORDER NONLINEAR SCHRÖDINGER EQUATION IN OPTICAL FIBERS USING SYMBOLIC COMPUTATION

2011 ◽  
Vol 25 (04) ◽  
pp. 499-509 ◽  
Author(s):  
XIANG-HUA MENG ◽  
ZHI-YUAN SUN ◽  
CHUN-YI ZHANG ◽  
BO TIAN

In this paper, a generalized variable-coefficient nonlinear Schrödinger equation with higher-order and gain/loss effects which can be used to describe the femtosecond pulse propagation is analytically investigated via symbolic computation. Under sets of coefficient constraints, such an equation is transformed into a completely integrable constant-coefficient higher-order nonlinear Schrödinger equation. Furthermore, through the transformation, the dark one- and two-soliton solutions for the generalized variable-coefficient higher-order nonlinear Schrödinger equation are derived by means of the bilinear method.

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Guiying Chen ◽  
Xiangpeng Xin ◽  
Feng Zhang

An integrable variable coefficient nonlocal nonlinear Schrödinger equation (NNLS) is studied; by employing the Hirota’s bilinear method, the bilinear form is obtained, and the N -soliton solutions are constructed. In addition, some singular solutions and period solutions of the addressed equation with specific coefficients are shown. Finally, under certain conditions, the asymptotic behavior of the two-soliton solution is analyzed to prove that the collision of the two-soliton is elastic.


Sign in / Sign up

Export Citation Format

Share Document