Symbolic computation on soliton solutions for variable-coefficient nonlinear Schrödinger equation in nonlinear optics

2011 ◽  
Vol 43 (11-15) ◽  
pp. 147-162 ◽  
Author(s):  
Wen-Jun Liu ◽  
Bo Tian
2011 ◽  
Vol 25 (04) ◽  
pp. 499-509 ◽  
Author(s):  
XIANG-HUA MENG ◽  
ZHI-YUAN SUN ◽  
CHUN-YI ZHANG ◽  
BO TIAN

In this paper, a generalized variable-coefficient nonlinear Schrödinger equation with higher-order and gain/loss effects which can be used to describe the femtosecond pulse propagation is analytically investigated via symbolic computation. Under sets of coefficient constraints, such an equation is transformed into a completely integrable constant-coefficient higher-order nonlinear Schrödinger equation. Furthermore, through the transformation, the dark one- and two-soliton solutions for the generalized variable-coefficient higher-order nonlinear Schrödinger equation are derived by means of the bilinear method.


2021 ◽  
pp. 2150194
Author(s):  
Zhi-Qiang Li ◽  
Shou-Fu Tian ◽  
Tian-Tian Zhang ◽  
Jin-Jie Yang

Based on inverse scattering transformation, a variable-coefficient fifth-order nonlinear Schrödinger equation is studied through the Riemann–Hilbert (RH) approach with zero boundary conditions at infinity, and its multi-soliton solutions with [Formula: see text] distinct arbitrary-order poles are successfully derived. By deriving the eigenfunction and scattering matrix, and revealing their properties, a RH problem (RHP) is constructed based on inverse scattering transformation. Via solving the RHP, the formulae of multi-soliton solutions are displayed when the reflection coefficient possesses [Formula: see text] distinct arbitrary-order poles. Finally, some appropriate parameters are selected to analyze the interaction of multi-soliton solutions graphically.


2021 ◽  
Author(s):  
Ali Tozar ◽  
Orkun Tasbozan ◽  
Ali Kurt

Abstract Solitons which can be described as a localized wave form that maintain their shape after a collision with another soliton have became a very important phenomena in nonlinear optics due to their potential. They can be used as lossless information carriers in optical fibers due to their robustness arising from their particle grade stability upon a collision. Many scientists from various areas including electronic communication engineers have made solitons the main subject of study. Analytical solutions of nonlinear Schrödinger equation have a very important place in these studies. With the progress of nonlinear optics, some types of nonlinear Schrödinger equation have been derived for better understanding. Resonant nonlinear Schrödinger equation which is being used for describing nonlinear optical phenomena is a generic example for newly derived nonlinear Schrödinger equation. In this study, resonant nonlinear Schrödinger equation has been solved by using functional variable method and sixteen new soliton solutions have been obtained


Sign in / Sign up

Export Citation Format

Share Document