scholarly journals Macroscopic dynamics of gene regulatory networks revealed by individual entropy

Author(s):  
Cong Liu ◽  
Lijie Hao ◽  
Jinzhi Lei

Complex systems are usually high-dimensional with intricate interactions among internal components, and may display complicated dynamics under different conditions. While it is difficult to measure detailed dynamics of each component, proper macroscopic description of a complex system is crucial for quantitative studies. In biological systems, each cell is a complex system containing a huge number of molecular components that are interconnected with each other through intricate molecular interaction networks. Here, we consider gene regulatory networks in a cell, and introduce individual entropy as a macroscopic variable to quantify the transcriptional dynamics in response to changes in random perturbations and/or network structures. The proposed individual entropy measures the information entropy of a system at each instant with respect to a basal reference state, and may provide temporal dynamics to characterize switches of system states. Individual entropy provides a method to quantify the stationary macroscopic dynamics of a gene set that is dependent on the gene regulation connections, and can be served as an indicator for the evolution of network structure variation. Moreover, the individual entropy with reference to a preceding state enables us to characterize different dynamic patterns generated from varying network structures. Our results show that the proposed individual entropy can be a valuable macroscopic variable of complex systems in characterizing the transition processes from order to disorder dynamics, and to identify the critical events during the transition process.

2021 ◽  
Author(s):  
Cong Liu ◽  
Lijie Hao ◽  
Jinzhi Lei

Complex systems are usually high-dimensional with intricate interactions among internal components, and may display complicated dynamics under different conditions. While it is {difficult} to measure detail dynamics of each component, proper macroscopic description of a complex system is crucial for quantitative studies. In biological systems, each cell is a complex system containing a huge number of molecular components that are interconnected with each other through intricate molecular interaction networks. Here, we consider gene regulatory networks in a cell, and introduce individual entropy as a macroscopic variable to quantify the transcriptional dynamics in response to changes in random perturbations and/or network structures. The proposed individual entropy measures the information entropy of a system at each instant with respect to a basal reference state, and may provide temporal dynamics to characterize switches of system states. Individual entropy provides a method to quantify the stationary macroscopic dynamics of a gene set that is dependent on the gene regulation connections, and can be served as an indicator for the evolution of network structure variation. Moreover, the individual entropy with reference to a preceding state enable us to characterize different dynamic patterns generated from varying network structures. Our results show that the proposed individual entropy can be a valuable macroscopic variable of complex systems in characterizing the transition processes from order to disorder dynamics, and to identify the critical events during the transition process.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1022
Author(s):  
Gianluca D’Addese ◽  
Martina Casari ◽  
Roberto Serra ◽  
Marco Villani

In many complex systems one observes the formation of medium-level structures, whose detection could allow a high-level description of the dynamical organization of the system itself, and thus to its better understanding. We have developed in the past a powerful method to achieve this goal, which however requires a heavy computational cost in several real-world cases. In this work we introduce a modified version of our approach, which reduces the computational burden. The design of the new algorithm allowed the realization of an original suite of methods able to work simultaneously at the micro level (that of the binary relationships of the single variables) and at meso level (the identification of dynamically relevant groups). We apply this suite to a particularly relevant case, in which we look for the dynamic organization of a gene regulatory network when it is subject to knock-outs. The approach combines information theory, graph analysis, and an iterated sieving algorithm in order to describe rather complex situations. Its application allowed to derive some general observations on the dynamical organization of gene regulatory networks, and to observe interesting characteristics in an experimental case.


2018 ◽  
Vol 14 ◽  
pp. 117693431876788
Author(s):  
Raúl García-Calvo ◽  
JL Guisado ◽  
Fernando Diaz-del-Rio ◽  
Antonio Córdoba ◽  
Francisco Jiménez-Morales

2008 ◽  
Vol 06 (03) ◽  
pp. 543-572 ◽  
Author(s):  
ADRIANO V. WERHLI ◽  
DIRK HUSMEIER

There have been various attempts to improve the reconstruction of gene regulatory networks from microarray data by the systematic integration of biological prior knowledge. Our approach is based on pioneering work by Imoto et al.11 where the prior knowledge is expressed in terms of energy functions, from which a prior distribution over network structures is obtained in the form of a Gibbs distribution. The hyperparameters of this distribution represent the weights associated with the prior knowledge relative to the data. We have derived and tested a Markov chain Monte Carlo (MCMC) scheme for sampling networks and hyperparameters simultaneously from the posterior distribution, thereby automatically learning how to trade off information from the prior knowledge and the data. We have extended this approach to a Bayesian coupling scheme for learning gene regulatory networks from a combination of related data sets, which were obtained under different experimental conditions and are therefore potentially associated with different active subpathways. The proposed coupling scheme is a compromise between (1) learning networks from the different subsets separately, whereby no information between the different experiments is shared; and (2) learning networks from a monolithic fusion of the individual data sets, which does not provide any mechanism for uncovering differences between the network structures associated with the different experimental conditions. We have assessed the viability of all proposed methods on data related to the Raf signaling pathway, generated both synthetically and in cytometry experiments.


Sign in / Sign up

Export Citation Format

Share Document