Evolutionary Bioinformatics
Latest Publications


TOTAL DOCUMENTS

528
(FIVE YEARS 138)

H-INDEX

29
(FIVE YEARS 4)

Published By "Libertas Academica, Ltd."

1176-9343, 1176-9343

2021 ◽  
Vol 17 ◽  
pp. 117693432110520
Author(s):  
Yanping Zhang ◽  
Xiaojie Jin ◽  
Haiyan Wang ◽  
Yaoyao Miao ◽  
Xiaoping Yang ◽  
...  

SARS-CoV-2 needs to efficiently make use of the resources from hosts in order to survive and propagate. Among the multiple layers of regulatory network, mRNA translation is the rate-limiting step in gene expression. Synonymous codon usage usually conforms with tRNA concentration to allow fast decoding during translation. It is acknowledged that SARS-CoV-2 has adapted to the codon usage of human lungs so that the virus could rapidly proliferate in the lung environment. While this notion seems to nicely explain the adaptation of SARS-CoV-2 to lungs, it is unable to tell why other viruses do not have this advantage. In this study, we retrieve the GTEx RNA-seq data for 30 tissues (belonging to over 17 000 individuals). We calculate the RSCU (relative synonymous codon usage) weighted by gene expression in each human sample, and investigate the correlation of RSCU between the human tissues and SARS-CoV-2 or RaTG13 (the closest coronavirus to SARS-CoV-2). Lung has the highest correlation of RSCU to SARS-CoV-2 among all tissues, suggesting that the lung environment is generally suitable for SARS-CoV-2. Interestingly, for most tissues, SARS-CoV-2 has higher correlations with the human samples compared with the RaTG13-human correlation. This difference is most significant for lungs. In conclusion, the codon usage of SARS-CoV-2 has adapted to human lungs to allow fast decoding and translation. This adaptation probably took place after SARS-CoV-2 split from RaTG13 because RaTG13 is less perfectly correlated with human. This finding depicts the trajectory of adaptive evolution from ancestral sequence to SARS-CoV-2, and also well explains why SARS-CoV-2 rather than other viruses could perfectly adapt to human lung environment.


2021 ◽  
Vol 17 ◽  
pp. 117693432110413
Author(s):  
Chaoxin Zhang ◽  
Tao Wang ◽  
Tongyan Cui ◽  
Shengwei Liu ◽  
Bing Zhang ◽  
...  

The CCAAT/enhancer binding protein (C/EBP) transcription factors (TFs) regulate many important biological processes, such as energy metabolism, inflammation, cell proliferation etc. A genome-wide gene identification revealed the presence of a total of 99 C/EBP genes in pig and 19 eukaryote genomes. Phylogenetic analysis showed that all C/EBP TFs were classified into 6 subgroups named C/EBPα, C/EBPβ, C/EBPδ, C/EBPε, C/EBPγ, and C/EBPζ. Gene expression analysis showed that the C/EBPα, C/EBPβ, C/EBPδ, C/EBPγ, and C/EBPζ genes were expressed ubiquitously with inconsistent expression patterns in various pig tissues. Moreover, a pig C/EBP regulatory network was constructed, including C/EBP genes, TFs and miRNAs. A total of 27 feed-forward loop (FFL) motifs were detected in the pig C/EBP regulatory network. Based on the RNA-seq data, gene expression patterns related to FFL sub-network were analyzed in 27 adult pig tissues. Certain FFL motifs may be tissue specific. Functional enrichment analysis indicated that C/EBP and its target genes are involved in many important biological pathways. These results provide valuable information that clarifies the evolutionary relationships of the C/EBP family and contributes to the understanding of the biological function of C/EBP genes.


2021 ◽  
Vol 17 ◽  
pp. 117693432199635
Author(s):  
Daoxin Liu ◽  
Pengfei Song ◽  
Jingyan Yan ◽  
Haijing Wang ◽  
Zhenyuan Cai ◽  
...  

Wild-caught animals must cope with drastic lifestyle and dietary changes after being induced to captivity. How the gut microbiome structure of these animals will change in response receives increasing attention. The plateau zokor ( Eospalax baileyi), a typic subterranean rodent endemic to the Qinghai-Tibet plateau, spends almost the whole life underground and is well adapted to the environmental pressures of both plateau and underground. However, how the gut microbiome of the plateau zokor will change in response to captivity has not been reported to date. This study compared the microbial community structure and functions of 22 plateau zokors before (the WS group) and after being kept in captivity for 15 days (the LS group, fed on carrots) using the 16S rRNA gene via high-throughput sequencing technology. The results showed that the LS group retained 973 of the 977 operational taxonomic units (OTUs) in the WS group, and no new OTUs were found in the LS group. The dominant bacterial phyla were Bacteroides and Firmicutes in both groups. In alpha diversity analysis, the Shannon, Sobs, and ACE indexes of the LS group were significantly lower than those of the WS group. A remarkable difference ( P < 0.01) between groups was also detected in beta diversity analysis. The UPGMA clustering, NMDS, PCoA, and Anosim results all showed that the intergroup difference was significantly greater than the intragroup difference. And compared with the WS group, the intragroup difference of the gut microbiota in the LS group was much larger, which failed to support the assumption that similar diets should drive convergence of gut microbial communities. PICRUSt revealed that although some functional categories displayed significant differences between groups, the relative abundances of these categories were very close in both groups. Based on all the results, we conclude that as plateau zokors enter captivity for a short time, although the relative abundances of different gut microbiota categories shifted significantly, they can maintain almost all the OTUs and the functions of the gut microbiota in the wild. So, the use of wild-caught plateau zokors in gut microbial studies is acceptable if the time in captivity is short.


2021 ◽  
Vol 17 ◽  
pp. 117693432110168
Author(s):  
Rita Rahmeh ◽  
Abrar Akbar ◽  
Vinod Kumar ◽  
Hamad Al-Mansour ◽  
Mohamed Kishk ◽  
...  

Soil contamination by hydrocarbons due to oil spills has become a global concern and it has more implications in oil producing regions. Biostimulation is considered as one of the promising remediation techniques that can be adopted to enhance the rate of degradation of crude oil. The soil microbial consortia play a critical role in governing the biodegradation of total petroleum hydrocarbons (TPHs), in particular polycyclic aromatic hydrocarbons (PAHs). In this study, the degradation pattern of TPHs and PAHs of Kuwait soil biopiles was measured at three-month intervals. Then, the microbial consortium associated with oil degradation at each interval was revealed through 16S rRNA based next generation sequencing. Rapid degradation of TPHs and most of the PAHs was noticed at the first 3 months of biostimulation with a degradation rate of pyrene significantly higher compared to other PAHs counterparts. The taxonomic profiling of individual stages of remediation revealed that, biostimulation of the investigated soil favored the growth of Proteobacteria, Alphaprotobacteria, Chloroflexi, Chlorobi, and Acidobacteria groups. These findings provide a key step towards the restoration of oil-contaminated lands in the arid environment.


2021 ◽  
Vol 17 ◽  
pp. 117693432110389
Author(s):  
Olubukola Oluranti Babalola ◽  
Bartholomew Saanu Adeleke ◽  
Ayansina Segun Ayangbenro

In recent times, diverse agriculturally important endophytic bacteria colonizing plant endosphere have been identified. Harnessing the potential of Bacillus species from sunflower could reveal their biotechnological and agricultural importance. Here, we present genomic insights into B. cereus T4S isolated from sunflower sourced from Lichtenburg, South Africa. Genome analysis revealed a sequence read count of 7 255 762, a genome size of 5 945 881 bp, and G + C content of 34.8%. The genome contains various protein-coding genes involved in various metabolic pathways. The detection of genes involved in the metabolism of organic substrates and chemotaxis could enhance plant-microbe interactions in the synthesis of biological products with biotechnological and agricultural importance.


2021 ◽  
Vol 17 ◽  
pp. 117693432110584
Author(s):  
Liou Huang ◽  
Chunrong Wu ◽  
Dan Xu ◽  
Yuhui Cui ◽  
Jianguo Tang

Background: Sepsis is a dysregulated host response to pathogens. Delay in sepsis diagnosis has become a primary cause of patient death. This study determines some factors to prevent septic shock in its early stage, contributing to the early treatment of sepsis. Methods: The sequencing data (RNA- and miRNA-sequencing) of patients with septic shock were obtained from the NCBI GEO database. After re-annotation, we obtained lncRNAs, miRNA, and mRNA information. Then, we evaluated the immune characteristics of the sample based on the ssGSEA algorithm. We used the WGCNA algorithm to obtain genes significantly related to immunity and screen for important related factors by constructing a ceRNA regulatory network. Result: After re-annotation, we obtained 1708 lncRNAs, 129 miRNAs, and 17 326 mRNAs. Also, through the ssGSEA algorithm, we obtained 5 important immune cells. Finally, we constructed a ceRNA regulation network associated with SS pathways. Conclusion: We identified 5 immune cells with significant changes in the early stage of septic shock. We also constructed a ceRNA network, which will help us explore the pathogenesis of septic shock.


2021 ◽  
Vol 17 ◽  
pp. 117693432110575
Author(s):  
Peidong Yang ◽  
Zhitang Wang ◽  
Qingqin Peng ◽  
Weibin Lian ◽  
Debo Chen

The microbiome plays diverse roles in many diseases and can potentially contribute to cancer development. Breast cancer is the most commonly diagnosed cancer in women worldwide. Thus, we investigated whether the gut microbiota differs between patients with breast carcinoma and those with benign tumors. The DNA of the fecal microbiota community was detected by Illumina sequencing and the taxonomy of 16S rRNA genes. The α-diversity and β-diversity analyses were used to determine richness and evenness of the gut microbiota. Gene function prediction of the microbiota in patients with benign and malignant carcinoma was performed using PICRUSt. There was no significant difference in the α-diversity between patients with benign and malignant tumors ( P = 3.15e−1 for the Chao index and P = 3.1e−1 for the ACE index). The microbiota composition was different between the 2 groups, although no statistical difference was observed in β-diversity. Of the 31 different genera compared between the 2 groups, level of only Citrobacter was significantly higher in the malignant tumor group than that in benign tumor group. The metabolic pathways of the gut microbiome in the malignant tumor group were significantly different from those in benign tumor group. Furthermore, the study establishes the distinct richness of the gut microbiome in patients with breast cancer with different clinicopathological factors, including ER, PR, Ki-67 level, Her2 status, and tumor grade. These findings suggest that the gut microbiome may be useful for the diagnosis and treatment of malignant breast carcinoma.


2021 ◽  
Vol 17 ◽  
pp. 117693432110460
Author(s):  
Yongjiang Qian ◽  
Lili Zhang ◽  
Zhen Sun ◽  
Guangyao Zang ◽  
Yalan Li ◽  
...  

Atherosclerosis is a multifaceted disease characterized by the formation and accumulation of plaques that attach to arteries and cause cardiovascular disease and vascular embolism. A range of diagnostic techniques, including selective coronary angiography, stress tests, computerized tomography, and nuclear scans, assess cardiovascular disease risk and treatment targets. However, there is currently no simple blood biochemical index or biological target for the diagnosis of atherosclerosis. Therefore, it is of interest to find a biochemical blood marker for atherosclerosis. Three datasets from the Gene Expression Omnibus (GEO) database were analyzed to obtain differentially expressed genes (DEG) and the results were integrated using the Robustrankaggreg algorithm. The genes considered more critical by the Robustrankaggreg algorithm were put into their own data set and the data set system with cell classification information for verification. Twenty-one possible genes were screened out. Interestingly, we found a good correlation between RPS4Y1, EIF1AY, and XIST. In addition, we know the general expression of these genes in different cell types and whole blood cells. In this study, we identified BTNL8 and BLNK as having good clinical significance. These results will contribute to the analysis of the underlying genes involved in the progression of atherosclerosis and provide insights for the discovery of new diagnostic and evaluation methods.


2021 ◽  
Vol 17 ◽  
pp. 117693432110626
Author(s):  
Irene van den Bent ◽  
Stavros Makrodimitris ◽  
Marcel Reinders

Computationally annotating proteins with a molecular function is a difficult problem that is made even harder due to the limited amount of available labeled protein training data. Unsupervised protein embeddings partly circumvent this limitation by learning a universal protein representation from many unlabeled sequences. Such embeddings incorporate contextual information of amino acids, thereby modeling the underlying principles of protein sequences insensitive to the context of species. We used an existing pre-trained protein embedding method and subjected its molecular function prediction performance to detailed characterization, first to advance the understanding of protein language models, and second to determine areas of improvement. Then, we applied the model in a transfer learning task by training a function predictor based on the embeddings of annotated protein sequences of one training species and making predictions on the proteins of several test species with varying evolutionary distance. We show that this approach successfully generalizes knowledge about protein function from one eukaryotic species to various other species, outperforming both an alignment-based and a supervised-learning-based baseline. This implies that such a method could be effective for molecular function prediction in inadequately annotated species from understudied taxonomic kingdoms.


2021 ◽  
Vol 17 ◽  
pp. 117693432110351
Author(s):  
Yupeng Wang ◽  
Ying Sun ◽  
Paule Valery Joseph

In humans, taste genes are responsible for perceiving at least 5 different taste qualities. Human taste genes’ evolutionary mechanisms need to be explored. We compiled a list of 69 human taste-related genes and divided them into 7 functional groups. We carried out comparative genomic and evolutionary analyses for these taste genes based on 8 vertebrate species. We found that relative to other groups of human taste genes, human TAS2R genes have a higher proportion of tandem duplicates, suggesting that tandem duplications have contributed significantly to the expansion of the human TAS2R gene family. Human TAS2R genes tend to have fewer collinear genes in outgroup species and evolve faster, suggesting that human TAS2R genes have experienced more gene relocations. Moreover, human TAS2R genes tend to be under more relaxed purifying selection than other genes. Our study sheds new insights into diverse and contrasting evolutionary patterns among human taste genes.


Sign in / Sign up

Export Citation Format

Share Document