Breather wave, rogue wave and lump wave solutions for a (3+1)-dimensional generalized Kadomtsev–Petviashvili equation in fluid

2018 ◽  
Vol 32 (20) ◽  
pp. 1850223 ◽  
Author(s):  
Ming-Zhen Li ◽  
Bo Tian ◽  
Yan Sun ◽  
Xiao-Yu Wu ◽  
Chen-Rong Zhang

Under investigation in this paper is a (3[Formula: see text]+[Formula: see text]1)-dimensional generalized Kadomtsev–Petviashvili equation, which describes the long water waves and small-amplitude surface waves with the weak nonlinearity, weak dispersion and weak perturbation in a fluid. Via the Hirota method and symbolic computation, the lump wave, breather wave and rogue wave solutions are obtained. We graphically present the lump waves under the influence of the dispersion effect, nonlinearity effect, disturbed wave velocity effects and perturbed effects: Decreasing value of the dispersion effect can lead to the range of the lump wave decreases, but has no effect on the amplitude. When the value of the nonlinearity effect or disturbed wave velocity effects increases respectively, lump wave’s amplitude decreases but lump wave’s location keeps unchanged. Amplitudes of the lump waves are independent of the perturbed effects. Breather waves and rogue waves are displayed: Rogue waves emerge when the periods of the breather waves go to the infinity. When the value of the dispersion effect decreases, range of the rogue wave increases. When the value of the nonlinearity effect or disturbed wave velocity effects decreases respectively, rogue wave’s amplitude decreases. Value changes of the perturbed effects cannot influence the rogue wave.

2017 ◽  
Vol 31 (22) ◽  
pp. 1750122 ◽  
Author(s):  
Xiao-Yu Wu ◽  
Bo Tian ◽  
Han-Peng Chai ◽  
Yan Sun

Under investigation in this letter is a (3[Formula: see text]+[Formula: see text]1)-dimensional generalized B-type Kadomtsev-Petviashvili equation, which describes the weakly dispersive waves propagating in a fluid. Employing the Hirota method and symbolic computation, we obtain the lump, breather-wave and rogue-wave solutions under certain constraints. We graphically study the lump waves with the influence of the parameters [Formula: see text], [Formula: see text] and [Formula: see text] which are all the real constants: When [Formula: see text] increases, amplitude of the lump wave increases, and location of the peak moves; when [Formula: see text] increases, lump wave’s amplitude decreases, but location of the peak keeps unchanged; when [Formula: see text] changes, lump wave’s peak location moves, but amplitude keeps unchanged. Breather waves and rogue waves are displayed: Rogue waves emerge when the periods of the breather waves go to the infinity.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Zhonglong Zhao ◽  
Lingchao He ◽  
Yubin Gao

In this paper, the bilinear method is employed to investigate the rogue wave solutions and the rogue type multiple lump wave solutions of the (2+1)-dimensional Benjamin-Ono equation. Two theorems for constructing rogue wave solutions are proposed with the aid of a variable transformation. Four kinds of rogue wave solutions are obtained by means of Theorem 1. In Theorem 2, three polynomial functions are used to derive multiple lump wave solutions. The 3-lump solutions, 6-lump solutions, and 8-lump solutions are presented, respectively. The 3-lump wave has a “triangular” structure. The centers of the 6-lump wave form a pentagram around a single lump wave. The 8-lump wave consists of a set of seven first order rogue waves and one second order rogue wave as the center. The multiple lump wave develops into low order rogue wave as parameters decline to zero. The method presented in this paper provides a uniform method for investigating high order rational solutions. All the results are useful in explaining high dimensional dynamical phenomena of the (2+1)-dimensional Benjamin-Ono equation.


2019 ◽  
Vol 33 (25) ◽  
pp. 1950296 ◽  
Author(s):  
Ya-Si Deng ◽  
Bo Tian ◽  
Yan Sun ◽  
Chen-Rong Zhang ◽  
Cong-Cong Hu

Nonlinear waves are seen in nature, such as the water waves and plasma waves. Investigated in this paper is a (3 + 1)-dimensional B-type Kadomtsev–Petviashvili–Boussinesq equation. Based on the bilinear method, we get the rational solutions, which are different from the published ones, semi-rational solutions and breather-type kink soliton solutions. Through the rational solutions, we observe two types of waves: the lump waves and line rogue waves. The semi-rational solutions depict two types of interactions: (1) The fusion or fission between the lump wave and soliton; (2) The interaction between the line rogue wave and soliton. During the interaction between the line rogue wave and soliton, the line rogue wave evolves with three different shapes: the bright rogue waves, bright–dark rogue waves and dark rogue waves. Via the breather-type kink soliton solutions, we observe the breather-soliton mixture.


Author(s):  
Wei Tan ◽  
Zhao-Yang Yin

Abstract The parameter limit method on the basis of Hirota’s bilinear method is proposed to construct the rogue wave solutions for nonlinear partial differential equations (NLPDEs). Some real and complex differential equations are used as concrete examples to illustrate the effectiveness and correctness of the described method. The rogue waves and homoclinic solutions of different structures are obtained and simulated by three-dimensional graphics, respectively. More importantly, we find that rogue wave solutions and homoclinic solutions appear in pairs. That is to say, for some NLPDEs, if there is a homoclinic solution, then there must be a rogue wave solution. The twin phenomenon of rogue wave solutions and homoclinic solutions of a class of NLPDEs is discussed.


Author(s):  
Huanhuan Lu ◽  
Yufeng Zhang

AbstractIn this paper, we analyse two types of rogue wave solutions generated from two improved ansatzs, to the (2 + 1)-dimensional generalized Korteweg–de Vries equation. With symbolic computation, the first-order rogue waves, second-order rogue waves, third-order rogue waves are generated directly from the first ansatz. Based on the Hirota bilinear formulation, another type of one-rogue waves and two-rogue waves can be obtained from the second ansatz. In addition, the dynamic behaviours of obtained rogue wave solutions are illustrated graphically.


Author(s):  
Yanlin Ye ◽  
Yi Zhou ◽  
Shihua Chen ◽  
Fabio Baronio ◽  
Philippe Grelu

We formulate a non-recursive Darboux transformation technique to obtain the general n th-order rational rogue wave solutions to the coupled Fokas–Lenells system, which is an integrable extension of the noted Manakov system, by considering both the double-root and triple-root situations of the spectral characteristic equation. Based on the explicit fundamental and second-order rogue wave solutions, we demonstrate several interesting rogue wave dynamics, among which are coexisting rogue waves and anomalous Peregrine solitons. Our solutions are generalized to include the complete background-field parameters and therefore helpful for future experimental study.


2019 ◽  
Vol 33 (10) ◽  
pp. 1850121 ◽  
Author(s):  
Xiu-Bin Wang ◽  
Bo Han

In this work, a variable coefficient nonlinear Schrödinger (vc-NLS) equation is under investigation, which can describe the amplification or absorption of pulses propagating in an optical fiber with distributed dispersion and nonlinearity. By means of similarity reductions, a similar transformation helps us to relate certain class of solutions of the standard NLS equation to the solutions of integrable vc-NLS equation. Furthermore, we analytically consider nonautonomous breather wave, rogue wave solutions and their interactions in the vc-NLS equation, which possess complicated wave propagation in time and differ from the usual breather waves and rogue waves. Finally, the main characteristics of the rational solutions are graphically discussed. The parameters in the solutions can be used to control the shape, amplitude and scale of the rogue waves.


2017 ◽  
Vol 31 (36) ◽  
pp. 1750350 ◽  
Author(s):  
Xue-Wei Yan ◽  
Shou-Fu Tian ◽  
Min-Jie Dong ◽  
Li Zou

In this paper, the generalized variable-coefficient forced Kadomtsev–Petviashvili (gvcfKP) equation is investigated, which can be used to characterize the water waves of long wavelength relating to nonlinear restoring forces. Using a dependent variable transformation and combining the Bell’s polynomials, we accurately derive the bilinear expression for the gvcfKP equation. By virtue of bilinear expression, its solitary waves are computed in a very direct method. By using the Riemann theta function, we derive the quasiperiodic solutions for the equation under some limitation factors. Besides, an effective way can be used to calculate its homoclinic breather waves and rogue waves, respectively, by using an extended homoclinic test function. We hope that our results can help enrich the dynamical behavior of the nonlinear wave equations with variable-coefficient.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Yali Shen ◽  
Ruoxia Yao

A determinant representation of the n -fold Darboux transformation for the integrable nonlocal derivative nonlinear Schödinger (DNLS) equation is presented. Using the proposed Darboux transformation, we construct some particular solutions from zero seed, which have not been reported so far for locally integrable systems. We also obtain explicit breathers from a nonzero seed with constant amplitude, deduce the corresponding extended Taylor expansion, and obtain several first-order rogue wave solutions. Our results reveal several interesting phenomena which differ from those emerging from the classical DNLS equation.


Sign in / Sign up

Export Citation Format

Share Document