Dynamics of localized waves in a (3+1)-dimensional nonlinear evolution equation

2019 ◽  
Vol 33 (09) ◽  
pp. 1950101 ◽  
Author(s):  
Yunfei Yue ◽  
Yong Chen

In this paper, a (3[Formula: see text]+[Formula: see text]1)-dimensional nonlinear evolution equation is studied via the Hirota method. Soliton, lump, breather and rogue wave, as four types of localized waves, are derived. The obtained N-soliton solutions are dark solitons with some constrained parameters. General breathers, line breathers, two-order breathers, interaction solutions between the dark soliton and general breather or line breather are constructed by choosing suitable parameters on the soliton solution. By the long wave limit method on the soliton solution, some new lump and rogue wave solutions are obtained. In particular, dark lumps, interaction solutions between dark soliton and dark lump, two dark lumps are exhibited. In addition, three types of solutions related with rogue waves are also exhibited including line rogue wave, two-order line rogue waves, interaction solutions between dark soliton and dark lump or line rogue wave.

2020 ◽  
Vol 34 (06) ◽  
pp. 2050076 ◽  
Author(s):  
Han-Dong Guo ◽  
Tie-Cheng Xia ◽  
Wen-Xiu Ma

In this paper, an extended (3[Formula: see text]+[Formula: see text]1)-dimensional Kadomtsev–Petviashvili (KP) equation is studied via the Hirota bilinear derivative method. Soliton, breather, lump and rogue waves, which are four types of localized waves, are obtained. N-soliton solution is derived by employing bilinear method. Then, line or general breathers, two-order line or general breathers, interaction solutions between soliton and line or general breathers are constructed by complex conjugate approach. These breathers own different dynamic behaviors in different planes. Taking the long wave limit method on the multi-soliton solutions under special parameter constraints, lumps, two- and three-lump and interaction solutions between dark soliton and dark lump are constructed, respectively. Finally, dark rogue waves, dark two-order rogue waves and related interaction solutions between dark soliton and dark rogue waves or dark lump are also demonstrated. Moreover, dynamical characteristics of these localized waves and interaction solutions are further vividly demonstrated through lots of three-dimensional graphs.


2015 ◽  
Vol 70 (6) ◽  
pp. 437-443 ◽  
Author(s):  
Ying-hui Tian ◽  
Zheng-de Dai

AbstractA three-soliton limit method (TSLM) for seeking rogue wave solutions to nonlinear evolution equation (NEE) is proposed. The (2+1)-dimensional Ito equation is used as an example to illustrate the effectiveness of the method. As a result, two rogue waves and a family of new multi-wave solutions are obtained. The result shows that rogue wave can be obtained not only from extreme form of breather solitary wave but also from extreme form of double-breather solitary wave. This is a new and interesting discovery.


2021 ◽  
Author(s):  
longxing li ◽  
Long-Xing Li

Abstract A the (3+1)-dimensional generalized nonlinear evolution equation for the shallow water waves is investigated with different methods. Based on symbolic computation and Hirota bilinear form, Nsoliton solutions are constructed. In the process of degeneration of N-soliton solutions, T-breathers are derived by taking complexication method. Then rogue waves will emerge during the degeneration of breathers by taking the parameter limit method. Through full degeneration of N-soliton, M-lump solutions are derived based on long wave limit approach. In addition, we also find out that the partial degeneration of N-soliton process can generate the hybrid solutions composed of soliton, breather and lump.


2021 ◽  
Author(s):  
Hongcai Ma ◽  
Shupan Yue ◽  
Yidan Gao ◽  
Aiping Deng

Abstract Exact solutions of a new (2+1)-dimensional nonlinear evolution equation are studied. Through the Hirota bilinear method, the test function method and the improved tanh-coth and tah-cot method, with the assisstance of symbolic operations, one can obtain the lump solutions, multi lump solutions and more soliton solutions. Finally, by determining different parameters, we draw the three-dimensional plots and density plots at different times.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Lamine Thiam ◽  
Xi-zhong Liu

The residual symmetry of a (1 + 1)-dimensional nonlinear evolution equation (NLEE) ut+uxxx−6u2ux+6λux=0 is obtained through Painlevé expansion. By introducing a new dependent variable, the residual symmetry is localized into Lie point symmetry in an enlarged system, and the related symmetry reduction solutions are obtained using the standard Lie symmetry method. Furthermore, the (1 + 1)-dimensional NLEE equation is proved to be integrable in the sense of having a consistent Riccati expansion (CRE), and some new Bäcklund transformations (BTs) are given. In addition, some explicitly expressed solutions including interaction solutions between soliton and cnoidal waves are derived from these BTs.


Sign in / Sign up

Export Citation Format

Share Document