Electronic structures, elastic, magnetic properties and half-metallicity in PtONa3 anti-perovskite

2019 ◽  
Vol 33 (29) ◽  
pp. 1950362 ◽  
Author(s):  
Oum Elkheir Youb ◽  
Zoubir Aziz ◽  
Feyza Zahira Meghoufel ◽  
Bouadjemi Boubdellah ◽  
Djoher Chenine ◽  
...  

The structural, elastic, electronic and magnetic properties of the cubic [Formula: see text] anti-perovskite are investigated by means of the full-potential linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). We have used three approximations: the generalized gradient (GGA), the GGA+[Formula: see text][Formula: see text], where [Formula: see text] is on-site Coulomb interaction correction, and the modified Becke–Johnson (mBJ-GGA). The elastic constants [Formula: see text] show that our compounds are ductile and anisotropic. The results obtained for the spin-polarized band structure and the density of states show a half-metallic behavior for the compounds using the GGA, GGA+[Formula: see text][Formula: see text] and mBJ-GGA approaches. These results make [Formula: see text] a promising candidate for spintronics applications.

2019 ◽  
Vol 297 ◽  
pp. 120-130 ◽  
Author(s):  
Abdelhakim Chadli ◽  
Mohamed Halit ◽  
Brahim Lagoun ◽  
Ferhat Mohamedi ◽  
Said Maabed ◽  
...  

The structural, elastic and anisotropic properties for rare earth manganites compound YMnO3 in ferromagnetic state with hexagonal structure, have been investigated using the ab initio calculations based on the density functional theory, this calculations were based on the full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA). The agreement of the DFT (FP-LAPW) calculations including internal atomic relaxations, with the experimental data is very good. Other relevant quantities such as elastic constants, shear modulus, Young’s modulus, Poisson’s ratio, anisotropy factors, sound velocity, and Debye temperature have been calculated and discussed.


2012 ◽  
Vol 542-543 ◽  
pp. 1418-1421
Author(s):  
Qing Xiang Gao ◽  
Lin Xu ◽  
Bo Wu

The spin-polarized generalized gradient approximation to the density functional theory is used to determine the geometries, stability, electronic structures, and magnetic properties of the Gd8O12cluster. Our work reveals that the ground state configuration of the Gd8O12cluster is a hexahedral cage structure with Cisymmetry. The electronic and magnetic properties imply that the formations of the ionic bonds between the adjacent Gd and O atoms result in the high stability of the Gd8O12cluster, which is due to the charge transfers between the Gd 5d, 6s electrons to O 2p orbital. It is also confirmed by the electron densities of HOMO-LUMO states. In addition, the analysis of the magnetic properties implies the total magnetic moments are mostly dominated by the Gd 4f orbital.


SPIN ◽  
2021 ◽  
pp. 2150012
Author(s):  
W. Benosmane ◽  
S. Benatmane ◽  
R. Bentata ◽  
W. Benstaali

The structural electronic and magnetic properties of the double perovskite Ca2CrNbO6 in the cubic structure are investigated using the empirical full-potential linearized augmented plane wave (FP-LAPW) method within the framework of the spin-polarized density functional theory (DFT). These properties are calculated using the Generalized Gradient Approximation (GGA), [Formula: see text] and modified Becke–Johnson mBJ-GGA. In addition, the real and imaginary parts of the optical dielectric function and the reflectivity, and the refractive spectra are computed and the main features shown by their spectra are ascertained on the base of the investigation of density of states.


2016 ◽  
Vol 3 (1) ◽  
pp. 50 ◽  
Author(s):  
Madhav Prasad Ghimire ◽  
Gopi Chandra Kaphle ◽  
R.K. Thapa

<p>We have studied the electronic and magnetic properties of double perovskites Nd<sub>2</sub>MgIrO<sub>6</sub> by means of full-potential linearized augmented plane wave (FP-LAPW) method based on density-functional theory (DFT). For the exchange-correlation potential, generalized gradient approximation (GGA) has been used. Based on our DFT calculations, Nd<sub>2</sub>MgIrO<sub>6</sub> is found to have an antiferromagnetic (AFM) ground state. The material shows Mott-Hubbard type insulator, which is observed to occur due to strong correlation in Nd-4f and Ir-5d states in addition to large crystal distortion, observed in the system. Strong hybridization between O-2p, Ir-5d and Nd-4f electrons are observed from the density of states findings. Our results shows that the 5d electrons of Ir hybridize strongly with O-2p states close to the Fermi level giving rise to the insulating state with a Mott-gap of ~0.9 eV in Nd<sub>2</sub>MgIrO<sub>6</sub>. Our study suggests that the total magnetic moment reduces to 5.0 μ<sub>B</sub> per formula unit as a result of itinerant super-exchange rather than the exchange interaction involving individual ions of Nd and Ir atoms.</p><p>Journal of Nepal Physical Society Vol.3(1) 2015: 50-54</p>


2012 ◽  
Vol 9 (1) ◽  
pp. 155-158
Author(s):  
D. P. Rai ◽  
Amit Shankar ◽  
Sandeep. Sandeep ◽  
M. P. Ghimire ◽  
R. K. Thapa

The structural and magnetic properties of Co2CrGe, a Heusler alloy have been evaluated by first principles density functional theory through total energy calculations at 0 K by the full potential linearized augmented plane wave (FP-LAPW) method as implemented in WIEN2K code. The calculated results were compared with the previously reported results. Generalized gradient approximation (GGA) was used to study the structural and magnetic properties of Co2CrGe.


2014 ◽  
Vol 21 (03) ◽  
pp. 1450034 ◽  
Author(s):  
A. A. KARIM MUBARAK ◽  
MAHMOUD ALELAIMI

In this paper, we present first principles calculations of the energetic, electronic and magnetic properties of the variant termination of TiAl (001) and Ni / TiAl (001) surfaces with and without hydrogen atoms. The calculations have been performed within the density functional theory using full-potential linearized augmented plane wave method. The generalized gradient approximation (GGA) is utilized as the exchange-correlation energy. The octahedral site is the stable absorption site of H atom in the β- TiAl system. This absorption reduces the cohesive energy of β- TiAl system due to increase in the lattice constant. The surface energy for both TiAl (001) terminations is calculated. The stable adsorption site of H atoms on the variant termination of TiAl (001) surface is performed. The adsorption energy of hydrogen on Ti is more energetic than that on Al . The adsorption of H atom on both terminations of H / Ni / TiAl (001) is more preferable at the bridge site. The adsorption energies are enhanced on Ni atom due to the contraction between d- Ni bands and TiAl substrate band.


2003 ◽  
Vol 793 ◽  
Author(s):  
Daniel I Bilc ◽  
S.D. Mahanti ◽  
M.G. Kanatzidis

ABSTRACTComplex quaternary chalcogenides (AgSb)xPbn-2xTen (0<x<n/2) are thought to be narrow band-gap semiconductors which are very good candidates for room and high temperature thermoelectric applications. These systems form in the rock-salt structure similar to the well known two component system PbTe (x=0). In these systems Ag and Sb occupy Pb sites randomly although there is some evidence of short-range order. To gain insights into the electronic structure of these compounds, we have performed electronic structure calculations in AgSbTe2 (x=n/2). These calculations were carried out within ab initio density functional theory (DFT) using full potential linearized augmented plane wave (LAPW) method. The generalized gradient approximation (GGA) was used to treat the exchange and correlation potential. Spinorbit interaction (SOI) was incorporated using a second variational procedure. Since it is difficult to treat disorder in ab initio calculations, we have used several ordered structures for AgSbTe2. All these structures show semimetallic behavior with a pseudogap near the Fermi energy. Te and Sb p orbitals, which are close in energy, hybridize rather strongly indicating a covalent interaction between Te and Sb atoms.


2021 ◽  
Vol 1028 ◽  
pp. 199-203
Author(s):  
Fiqhri Heda Murdaka ◽  
Edi Suprayoga ◽  
Abdul Muizz Pradipto ◽  
Kohji Nakamura ◽  
Agustinus Agung Nugroho

We report the estimation of muon sites inside Mn3Sn using density functional theory based on the full-potential linearized augmented plane wave (FLAPW) calculation. Our calculation shows that the Perdew–Burke–Ernzerhof (PBE) Generalized-Gradient Approximation (GGA) functional is closer to the experimental structure compared to the von Barth-Hedin Local Density Approximation (LDA)-optimized geometry. The PBE GGA is therefore subsequently used in FLAPW post-calculation for the electrostatic potential calculation to find the local minima position as a guiding strategy for estimating the muon site. Our result reveals at least two muon sites of which one is placed at the center between two Mn-Sn triangular layers (A site) and the other at the trigonal prismatic site of Sn atom (B site). The total energy of Mn3Sn system in the presence of muon at A site or B site are compared and we find that A site is a more favorable site for muon to stop.


SPIN ◽  
2020 ◽  
Vol 10 (02) ◽  
pp. 2050013 ◽  
Author(s):  
Amina Aiche ◽  
Abdelkader Tadjer ◽  
Hadj Moulay Ahmed Mazouz ◽  
Bendouma Doumi ◽  
Houari Khachai

The electronic structure and magnetic properties of diluted Ca[Formula: see text]TMxS (TM[Formula: see text][Formula: see text][Formula: see text]V, Cr and Co) in the rocksalt structure at concentrations [Formula: see text], 0.125 and 0.25 were studied using the full-potential linearized augmented plane wave approximation of the density functional theory with the Wu-Cohen generalized gradient approximation (WC-GGA) and the Tran–Blaha-modified Becke–Johnson (TB-mBJ) potential. Features such as lattice constant, bulk modulus, spin-polarized band structures, total and local densities of states and magnetic properties have been computed. The electronic structure show that Ca[Formula: see text](V, Cr)xS at all the studied concentrations and the diluted Ca[Formula: see text]CoxS with [Formula: see text] compounds are half-metallic ferromagnets with spin polarization of 100%. The calculated total magnetic moments for Ca[Formula: see text]VxS and Ca[Formula: see text]CoxS show the same integer value of 3[Formula: see text][Formula: see text] per formula unit and Ca[Formula: see text]CrxS exhibit a total magnetic moment of 4[Formula: see text][Formula: see text], which confirm the half-metallic behavior of these compounds. We also calculated the values of the band edge spin splitting of the valence and conduction bands and the exchange constants. We have found that the ferromagnetic state is stable by the p-d exchange associated with the double-exchange mechanism. The diluted Ca[Formula: see text](V,Cr,Co)xS are found to be new promising candidates for spintronic applications.


2019 ◽  
Vol 33 (5) ◽  
pp. 1507-1512 ◽  
Author(s):  
A. Azouaoui ◽  
M. El Haoua ◽  
S. Salmi ◽  
A. El Grini ◽  
N. Benzakour ◽  
...  

AbstractIn this paper, we have studied the structural, electronic, and magnetic properties of the cubic perovskite system Mn4N using the first principles calculations based on density functional theory (DFT) with the generalized gradient approximation (GGA). The obtained data from DFT calculations are used as input data in Monte Carlo simulation with a mixed spin-5/2 and 1 Ising model to calculate the magnetic properties of this compound, such as the total, partial thermal magnetization, and the critical temperatures (TC). The obtained results show that Mn4N has a ferrimagnetic structure with two different sites of Mn in the lattice and presents a metallic behavior. The obtained TC is in good agreement with experimental results.


Sign in / Sign up

Export Citation Format

Share Document