ESTIMATING PARAMETERS OF MUSKINGUM MODEL USING AN ADAPTIVE HYBRID PSO ALGORITHM

Author(s):  
AIJIA OUYANG ◽  
ZHUO TANG ◽  
KENLI LI ◽  
AHMED SALLAM ◽  
EDWIN SHA

In order to accelerate the convergence and improve the calculation accuracy for parameter optimization of the Muskingum model, we propose a novel, adaptive hybrid particle swarm optimization (AHPSO) algorithm. With the decreasing of inertial weight factor proposed, this method can gradually converge to a global optimal with elite individuals obtained by hybrid PSO. In the paper, we analyzed the feasibility and the advantages of the AHPSO algorithm. Then, we verified its efficiency and superiority by application of the Muskingum model. We intensively evaluated the error fitting degree based on the comparison with four known formulas: the test method (TM), the least residual square method (LRSM), the nonlinear programming method (NPM), and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. The results show that the AHPSO has a higher precision. In addition, we compared the AHPSO algorithm with the binary-encoded genetic algorithm (BGA), the Gray genetic algorithm (GGA), the Gray-encoded accelerating genetic algorithm (GAGA) and the particle swarm optimization (PSO), and results show that AHPSO has faster convergent speed. Moreover, AHPSO has a competitive advantage compared with the above eight methods in terms of robustness. With the efficiency of this approach it can be extended to estimate parameters of other dynamic models.

2020 ◽  
Vol 10 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Neeti Kashyap ◽  
A. Charan Kumari ◽  
Rita Chhikara

AbstractWeb service compositions are commendable in structuring innovative applications for different Internet-based business solutions. The existing services can be reused by the other applications via the web. Due to the availability of services that can serve similar functionality, suitable Service Composition (SC) is required. There is a set of candidates for each service in SC from which a suitable candidate service is picked based on certain criteria. Quality of service (QoS) is one of the criteria to select the appropriate service. A standout amongst the most important functionality presented by services in the Internet of Things (IoT) based system is the dynamic composability. In this paper, two of the metaheuristic algorithms namely Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are utilized to tackle QoS based service composition issues. QoS has turned into a critical issue in the management of web services because of the immense number of services that furnish similar functionality yet with various characteristics. Quality of service in service composition comprises of different non-functional factors, for example, service cost, execution time, availability, throughput, and reliability. Choosing appropriate SC for IoT based applications in order to optimize the QoS parameters with the fulfillment of user’s necessities has turned into a critical issue that is addressed in this paper. To obtain results via simulation, the PSO algorithm is used to solve the SC problem in IoT. This is further assessed and contrasted with GA. Experimental results demonstrate that GA can enhance the proficiency of solutions for SC problem in IoT. It can also help in identifying the optimal solution and also shows preferable outcomes over PSO.


Author(s):  
Rongrong Li ◽  
Linrun Qiu ◽  
Dongbo Zhang

In this article, a hierarchical cooperative algorithm based on the genetic algorithm and the particle swarm optimization is proposed that the paper should utilize the global searching ability of genetic algorithm and the fast convergence speed of particle swarm optimization. The proposed algorithm starts from Individual organizational structure of subgroups and takes full advantage of the merits of the particle swarm optimization algorithm and the genetic algorithm (HCGA-PSO). The algorithm uses a layered structure with two layers. The bottom layer is composed of a series of genetic algorithm by subgroup that contributes to the global searching ability of the algorithm. The upper layer is an elite group consisting of the best individuals of each subgroup and the particle swarm algorithm is used to perform precise local search. The experimental results demonstrate that the HCGA-PSO algorithm has better convergence and stronger continuous search capability, which makes it suitable for solving complex optimization problems.


2013 ◽  
Vol 427-429 ◽  
pp. 1710-1713
Author(s):  
Xiang Tian ◽  
Yue Lin Gao

This paper introduces the principles and characteristics of Particle Swarm Optimization algorithm, and aims at the shortcoming of PSO algorithm, which is easily plunging into the local minimum, then we proposes a new improved adaptive hybrid particle swarm optimization algorithm. It adopts dynamically changing inertia weight and variable learning factors, which is based on the mechanism of natural selection. The numerical results of classical functions illustrate that this hybrid algorithm improves global searching ability and the success rate.


Sign in / Sign up

Export Citation Format

Share Document