Medical Image Enhancement Method Based on the Fractional Order Derivative and the Directional Derivative

Author(s):  
Jinlan Guan ◽  
Jiequan Ou ◽  
Zhihui Lai ◽  
Yuting Lai

In recent years, the fractional order derivative has been introduced for image enhancement. It was proved that the medical image enhancement method based on the fractional order derivative has better effect than the method based on the integral order calculus. However, a priori information such as texture surrounding a pixel is normally ignored by the traditional fractional differential operators with the same value in the eight directions. To address the above problem, this paper presents a new medical image enhancement method by taking the merits of fractional differential and directional derivative. The proposed method considers the surrounding information (such as the image edge, clarity and texture information) and structural features of different pixels, as well as the directional derivative of each pixel in constructing the masks. By proposing this method, it can not only improve the high frequency information, but also improve the low frequency information of the image. Ultimately, it enhances the texture information of the image. Extensive experiments on four kinds of medical image demonstrate that the proposed algorithm is in favor of preserving more texture details and superior to the existing fractional differential algorithms on medical image enhancement.

Author(s):  
S. Anand

Medical image enhancement improves the quality and facilitates diagnosis. This chapter investigates three methods of medical image enhancement by exploiting useful edge information. Since edges have higher perceptual importance, the edge information based enhancement process is always of interest. But determination of edge information is not an easy job. The edge information is obtained from various approaches such as differential hyperbolic function, Haar filters and morphological functions. The effectively determined edge information is used for enhancement process. The retinal image enhancement method given in this chapter improves the visual quality of the vessels in the optic region. X-ray image enhancement method presented here is to increase the visibility of the bones. These algorithms are used to enhance the computer tomography, chest x-ray, retinal, and mammogram images. These images are obtained from standard datasets and experimented. The performance of these enhancement methods are quantitatively evaluated.


2014 ◽  
Vol 543-547 ◽  
pp. 2543-2546
Author(s):  
Ai Bin Dong ◽  
Yun Feng Zhang ◽  
Yi Fang Liu

Studying of image enhancement shows that the quality of image heavily relies on human visual system. In this paper, we apply this fact to design a new image enhancement method for medical images that improves the detail regions. First, the eye region of interest (ROI) is segmented; then the Un-sharp Masking (USM) is used to enhance the detail regions. Experiments show that the proposed method can effectively improve the accuracy of medical image enhancement and has a significant effect.


Sign in / Sign up

Export Citation Format

Share Document