A MULTILEVEL FUSION APPROACH TO OBJECT IDENTIFICATION IN OUTDOOR ROAD SCENES

Author(s):  
VITTORIO MURINO ◽  
CARLO S. REGAZZONI ◽  
GIAN LUCA FORESTI ◽  
GIANNI VERNAZZA

The task of object identification is fundamental to the operations of an autonomous vehicle. It can be accomplished by using techniques based on a Multisensor Fusion framework, which allows the integration of data coming from different sensors. In this paper, an approach to the synergic interpretation of data provided by thermal and visual sensors is proposed. Such integration is justified by the necessity for solving the ambiguities that may arise from separate data interpretations. The architecture of a distributed Knowledge-Based system is described. It performs an Intelligent Data Fusion process by integrating, in an opportunistic way, data acquired with a thermal and a video (b/w) camera. Data integration is performed at various architecture levels in order to increase the robustness of the whole recognition process. A priori models allow the system to obtain interesting data from both sensors; to transform such data into intermediate symbolic objects; and, finally, to recognize environmental situations on which to perform further processing. Some results are reported for different environmental conditions (i.e. a road scene by day and by night, with and without the presence of obstacles).

2000 ◽  
Vol 15 (5) ◽  
pp. 38-46 ◽  
Author(s):  
J. Seitzer ◽  
J.P. Buckley ◽  
Y. Pan

Author(s):  
Yusuke Nakajima ◽  
Syoji Kobashi ◽  
Yohei Tsumori ◽  
Nao Shibanuma ◽  
Fumiaki Imamura ◽  
...  

1988 ◽  
Vol 18 (1) ◽  
pp. 43-66 ◽  
Author(s):  
Albert Casullo

Empiricist theories of knowledge are attractive for they offer the prospect of a unitary theory of knowledge based on relatively well understood physiological and cognitive processes. Mathematical knowledge, however, has been a traditional stumbling block for such theories. There are three primary features of mathematical knowledge which have led epistemologists to the conclusion that it cannot be accommodated within an empiricist framework: 1) mathematical propositions appear to be immune from empirical disconfirmation; 2) mathematical propositions appear to be known with certainty; and 3) mathematical propositions are necessary. Epistemologists who believe that some nonmathematical propositions, such as logical or ethical propositions, cannot be known a posteriori also typically appeal to the three factors cited above in defending their position. The primary purpose of this paper is to examine whether any of these alleged features of mathematical propositions establishes that knowledge of such propositions cannot be a posteriori.


2021 ◽  
Vol 13 (23) ◽  
pp. 4807
Author(s):  
Martin Sudmanns ◽  
Hannah Augustin ◽  
Lucas van der Meer ◽  
Andrea Baraldi ◽  
Dirk Tiede

Big optical Earth observation (EO) data analytics usually start from numerical, sub-symbolic reflectance values that lack inherent semantic information (meaning) and require interpretation. However, interpretation is an ill-posed problem that is difficult for many users to solve. Our semantic EO data cube architecture aims to implement computer vision in EO data cubes as an explainable artificial intelligence approach. Automatic semantic enrichment provides semi-symbolic spectral categories for all observations as an initial interpretation of color information. Users graphically create knowledge-based semantic models in a convergence-of-evidence approach, where color information is modelled a-priori as one property of semantic concepts, such as land cover entities. This differs from other approaches that do not use a-priori knowledge and assume a direct 1:1 relationship between reflectance values and land cover. The semantic models are explainable, transferable, reusable, and users can share them in a knowledgebase. We provide insights into our web-based architecture, called Sen2Cube.at, including semantic enrichment, data models, knowledge engineering, semantic querying, and the graphical user interface. Our implemented prototype uses all Sentinel-2 MSI images covering Austria; however, the approach is transferable to other geographical regions and sensors. We demonstrate that explainable, knowledge-based big EO data analysis is possible via graphical semantic querying in EO data cubes.


2017 ◽  
Vol 77 (14) ◽  
pp. 17889-17911 ◽  
Author(s):  
Sai Ma ◽  
Xianfeng Zhao ◽  
Qingxiao Guan ◽  
Zhoujun Xu ◽  
Yi Ma

Sign in / Sign up

Export Citation Format

Share Document