One-Dimensional Semiconjugacy Revisited

2003 ◽  
Vol 13 (07) ◽  
pp. 1657-1663 ◽  
Author(s):  
J. F. Alves ◽  
J. Sousa Ramos

Let f be a piecewise monotone interval map with positive topological entropy h(f)= log (s). Milnor and Thurston showed that f is topological semiconjugated to a piecewise linear map having slope s. Here we prove that these semiconjugacies are the eigenvectors of a certain linear endomorphism associated to f. Using this characterization, we prove a conjecture presented by those authors.

2001 ◽  
Vol 11 (12) ◽  
pp. 3163-3169 ◽  
Author(s):  
MATHIEU BAILLIF ◽  
ANDRÉ DE CARVALHO

We generalize to tree maps the theorems of Parry and Milnor–Thurston about the semi-conjugacy of a continuous piecewise monotone map f to a continuous piecewise linear map with constant slope, equal to the exponential of the entropy of f.


1993 ◽  
Vol 03 (06) ◽  
pp. 1557-1572 ◽  
Author(s):  
Yu. L. MAISTRENKO ◽  
V. L. MAISTRENKO ◽  
L. O. CHUA

We study the bifurcations of attractors of a one-dimensional 2-segment piecewise-linear map. We prove that the parameter regions of existence of stable point cycles γ are separated by regions of existence of stable interval cycles Γ containing chaotic everywhere dense trajectories. Moreover, we show that the period-doubling phenomenon for cycles of chaotic intervals is characterized by two universal constants δ and α, whose values are calculated from explicit formulas.


2014 ◽  
Vol 1 ◽  
pp. 17-20 ◽  
Author(s):  
Kais Feltekh ◽  
Danièle Fournier-Prunaret ◽  
Safya Belghith ◽  
Zouhair Ben Jemaa

1990 ◽  
Vol 107 (2) ◽  
pp. 401-413 ◽  
Author(s):  
Paul Glendinning

AbstractNecessary and sufficient conditions for a Lorenz map to be topologically conjugate to a piecewise linear map with constant slope (a β-transformation) are given, first in terms of kneading invariants of the maps and then in terms of the topological entropy restricted to basic sets. The dynamics of β-transformations is also described.


2011 ◽  
Vol 2011 ◽  
pp. 1-30 ◽  
Author(s):  
Viktor Avrutin ◽  
Michael Schanz ◽  
Björn Schenke

We investigate the structure of the chaotic domain of a specific one-dimensional piecewise linear map with one discontinuity. In this system, the region of ``robust" chaos is embedded between two periodic domains. One of them is organized by the period-adding scenario whereas the other one by the period-increment scenario with coexisting attractors. In the chaotic domain, the influence of both adjacent periodic domains leads to the coexistence of the recently discovered bandcount adding and bandcount-increment scenarios. In this work, we focus on the explanation of the overall structure of the chaotic domain and a description of the bandcount adding and bandcount increment scenarios.


Author(s):  
O. Jenkinson ◽  
M. Pollicott ◽  
P. Vytnova

AbstractIommi and Kiwi (J Stat Phys 135:535–546, 2009) showed that the Lyapunov spectrum of an expanding map need not be concave, and posed various problems concerning the possible number of inflection points. In this paper we answer a conjecture in Iommi and Kiwi (2009) by proving that the Lyapunov spectrum of a two branch piecewise linear map has at most two points of inflection. We then answer a question in Iommi and Kiwi (2009) by proving that there exist finite branch piecewise linear maps whose Lyapunov spectra have arbitrarily many points of inflection. This approach is used to exhibit a countable branch piecewise linear map whose Lyapunov spectrum has infinitely many points of inflection.


2015 ◽  
Vol 25 (13) ◽  
pp. 1550184 ◽  
Author(s):  
Carlos Lopesino ◽  
Francisco Balibrea-Iniesta ◽  
Stephen Wiggins ◽  
Ana M. Mancho

In this paper, we prove the existence of a chaotic saddle for a piecewise-linear map of the plane, referred to as the Lozi map. We study the Lozi map in its orientation and area preserving version. First, we consider the autonomous version of the Lozi map to which we apply the Conley–Moser conditions to obtain the proof of a chaotic saddle. Then we generalize the Lozi map on a nonautonomous version and we prove that the first and the third Conley–Moser conditions are satisfied, which imply the existence of a chaotic saddle. Finally, we numerically demonstrate how the structure of this nonautonomous chaotic saddle varies as parameters are varied.


2010 ◽  
Vol 20 (05) ◽  
pp. 1365-1378 ◽  
Author(s):  
GÁBOR CSERNÁK ◽  
GÁBOR STÉPÁN

In the present paper, we introduce and analyze a mechanical system, in which the digital implementation of a linear control loop may lead to chaotic behavior. The amplitude of such oscillations is usually very small, this is why these are called micro-chaotic vibrations. As a consequence of the digital effects, i.e. the sampling, the processing delay and the round-off error, the behavior of the system can be described by a piecewise linear map, the micro-chaos map. We examine a 2D version of the micro-chaos map and prove that the map is chaotic.


Sign in / Sign up

Export Citation Format

Share Document