TOPOLOGY AND PERIODIC ORBITS OF RING-SHAPED POTENTIALS AS A GENERALIZED 4-D ISOTROPIC OSCILLATOR

2010 ◽  
Vol 20 (09) ◽  
pp. 2809-2821
Author(s):  
M. C. BALSAS ◽  
S. FERRER ◽  
E. S. JIMÉNEZ ◽  
J. A. VERA

In this work we study a generalized integrable biparametric family of 4-D isotropic oscillators. This family allows to treat, in a unified way, oscillators defined by the potentials given by Hartmann and Quesne and other ring-shaped systems. Using the Liouville–Arnold theorem and the analysis of the momentum map in its critical points, we obtain a complete topological classification of the different invariant sets of the phase flow of this problem. By this topological study and the calculation of the action-angle variables we obtain the full classification of periodic and quasiperiodic orbits for this system.

Open Physics ◽  
2009 ◽  
Vol 7 (1) ◽  
Author(s):  
María Balsas ◽  
Elena Jiménez ◽  
Juan Vera ◽  
Antonio Vigueras

AbstractIn this paper, we consider an integrable approximation of the planar motion of a gyrostat in Newtonian interaction with a spherical rigid body. We then describe the Hamiltonian dynamics, in the fibers of constant total angular momentum vector of an invariant manifold of motion. Finally, using the Liouville-Arnold theorem and a particular analysis of the momentum map in its critical points, we obtain a complete topological classification of the different invariant sets of the phase flow of this problem. The results can be applied to study two-body roto-translatory problems where the rotation of one of them has a strong influence on the orbital motion of the system.


2018 ◽  
Vol 32 (15) ◽  
pp. 1850155 ◽  
Author(s):  
Chengwei Dong

In this paper, we systematically research periodic orbits of the Kuramoto–Sivashinsky equation (KSe). In order to overcome the difficulties in the establishment of one-dimensional symbolic dynamics in the nonlinear system, two basic periodic orbits can be used as basic building blocks to initialize cycle searching, and we use the variational method to numerically determine all the periodic orbits under parameter [Formula: see text] = 0.02991. The symbolic dynamics based on trajectory topology are very successful for classifying all short periodic orbits in the KSe. The current research can be conveniently adapted to the identification and classification of periodic orbits in other chaotic systems.


2018 ◽  
Vol 32 (21) ◽  
pp. 1850227 ◽  
Author(s):  
Chengwei Dong

In this paper, we systematically investigate the periodic solutions of the Rössler equations up to certain topological length. To overcome the difficulties for a return map that is multivalued and non-invertible in the nonlinear system, we propose a new approach that establishes one-dimensional symbolic dynamics based on the topological structure of the orbit. A newly designed variational method is numerically stable for cycle searching, and two-orbit fragments can be used as basic building blocks to initialize the system. The topological classification based on the whole orbit structure seems more effective than partitioning the Poincaré surface of section. The current research supplies an interesting framework for a systematic classification of periodic orbits in a chaotic flow.


2020 ◽  
Vol 23 (4) ◽  
pp. 641-658
Author(s):  
Gunnar Traustason ◽  
James Williams

AbstractIn this paper, we continue the study of powerfully nilpotent groups. These are powerful p-groups possessing a central series of a special kind. To each such group, one can attach a powerful nilpotency class that leads naturally to the notion of a powerful coclass and classification in terms of an ancestry tree. In this paper, we will give a full classification of powerfully nilpotent groups of rank 2. The classification will then be used to arrive at a precise formula for the number of powerfully nilpotent groups of rank 2 and order {p^{n}}. We will also give a detailed analysis of the ancestry tree for these groups. The second part of the paper is then devoted to a full classification of powerfully nilpotent groups of order up to {p^{6}}.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Clément Dutreix ◽  
Matthieu Bellec ◽  
Pierre Delplace ◽  
Fabrice Mortessagne

AbstractPhase singularities appear ubiquitously in wavefields, regardless of the wave equation. Such topological defects can lead to wavefront dislocations, as observed in a humongous number of classical wave experiments. Phase singularities of wave functions are also at the heart of the topological classification of the gapped phases of matter. Despite identical singular features, topological insulators and topological defects in waves remain two distinct fields. Realising 1D microwave insulators, we experimentally observe a wavefront dislocation – a 2D phase singularity – in the local density of states when the systems undergo a topological phase transition. We show theoretically that the change in the number of interference fringes at the transition reveals the topological index that characterises the band topology in the insulator.


Sign in / Sign up

Export Citation Format

Share Document