DYNAMICS OF MONOTONE GRAPH, DENDRITE AND DENDROID MAPS

2011 ◽  
Vol 21 (11) ◽  
pp. 3205-3215 ◽  
Author(s):  
ISSAM NAGHMOUCHI

We show that, for monotone graph map f, all the ω-limit sets are finite whenever f has periodic point and for monotone dendrite map, any infinite ω-limit set does not contain periodic points. As a consequence, monotone graph and dendrite maps have no Li–Yorke pairs. However, we built a homeomorphism on a dendroid with a scrambled set having nonempty interior.

2009 ◽  
Vol 23 (14) ◽  
pp. 3101-3111
Author(s):  
GUIFENG HUANG ◽  
LIDONG WANG ◽  
GONGFU LIAO

We mainly investigate the likely limit sets and the kneading sequences of unimodal Feigenbaum's maps (Feigenbaum's map can be regarded as the fixed point of the renormalization operator [Formula: see text], where λ is to be determined). First, we estimate the Hausdorff dimension of the likely limit set for the unimodal Feigenbaum's map and then for every decimal s ∈ (0, 1), we construct a unimodal Feigenbaum's map which has a likely limit set with Hausdorff dimension s. Second, we prove that the kneading sequences of unimodal Feigenbaum's maps are uniformly almost periodic points of the shift map but not periodic ones.


2020 ◽  
Vol 5 (2) ◽  
pp. 311-316
Author(s):  
E.N. Makhrova

AbstractLet X be a dendrite, f : X → X be a monotone map. In the papers by I. Naghmouchi (2011, 2012) it is shown that ω-limit set ω(x, f ) of any point x ∈ X has the next properties: (1)\omega (x,f) \subseteq \overline {Per(f)} , where Per( f ) is the set of periodic points of f ;(2)ω(x, f ) is either a periodic orbit or a minimal Cantor set.In the paper by E. Makhrova, K. Vaniukova (2016 ) it is proved that (3)\Omega (f) = \overline {Per(f)} , where Ω( f ) is the set of non-wandering points of f.The aim of this note is to show that the above results (1) – (3) do not hold for monotone maps on dendroids.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1116
Author(s):  
Guangwang Su ◽  
Taixiang Sun

Let I = [ 0 , 1 ] and f n be a sequence of continuous self-maps on I which converge uniformly to a self-map f on I. Denote by F ( I ) the set of fuzzy numbers on I, and denote by ( F ( I ) , f ^ ) and ( F ( I ) , f ^ n ) the Zadeh ′ s extensions of ( I , f ) and ( I , f n ) , respectively. In this paper, we study the ω -limit sets of ( F ( I ) , f ^ n ) and show that, if all periodic points of f are fixed points, then ω ( A , f ^ n ) ⊂ F ( f ^ ) for any A ∈ F ( I ) , where ω ( A , f ^ n ) is the ω -limit set of A under ( F ( I ) , f ^ n ) and F ( f ^ ) = { A ∈ F ( I ) : f ^ ( A ) = A } .


2021 ◽  
pp. 1-11
Author(s):  
STEPHEN JACKSON ◽  
BILL MANCE ◽  
SAMUEL ROTH

Abstract We consider the complexity of special $\alpha $ -limit sets, a kind of backward limit set for non-invertible dynamical systems. We show that these sets are always analytic, but not necessarily Borel, even in the case of a surjective map on the unit square. This answers a question posed by Kolyada, Misiurewicz, and Snoha.


2009 ◽  
Vol 147 (2) ◽  
pp. 455-488 ◽  
Author(s):  
R. D. MAULDIN ◽  
T. SZAREK ◽  
M. URBAŃSKI

AbstractWe deal with contracting finite and countably infinite iterated function systems acting on Polish spaces, and we introduce conformal Graph Directed Markov Systems on Polish spaces. Sufficient conditions are provided for the closure of limit sets to be compact, connected, or locally connected. Conformal measures, topological pressure, and Bowen's formula (determining the Hausdorff dimension of limit sets in dynamical terms) are introduced and established. We show that, unlike the Euclidean case, the Hausdorff measure of the limit set of a finite iterated function system may vanish. Investigating this issue in greater detail, we introduce the concept of geometrically perfect measures and provide sufficient conditions for geometric perfectness. Geometrical perfectness guarantees the Hausdorff measure of the limit set to be positive. As a by–product of the mainstream of our investigations we prove a 4r–covering theorem for all metric spaces. It enables us to establish appropriate co–Frostman type theorems.


2019 ◽  
Vol 2019 (746) ◽  
pp. 149-170
Author(s):  
Pekka Pankka ◽  
Juan Souto

Abstract We prove that Kleinian groups whose limit sets are Cantor sets of Hausdorff dimension < 1 are free. On the other hand we construct for any ε > 0 an example of a non-free purely hyperbolic Kleinian group whose limit set is a Cantor set of Hausdorff dimension < 1 + ε.


1986 ◽  
Vol 6 (3) ◽  
pp. 335-344 ◽  
Author(s):  
Louis Block ◽  
Ethan M. Coven

AbstractLet f denote a continuous map of a compact interval to itself, P(f) the set of periodic points of f and Λ(f) the set of ω-limit points of f. Sarkovskǐi has shown that Λ(f) is closed, and hence ⊆Λ(f), and Nitecki has shown that if f is piecewise monotone, then Λ(f)=. We prove that if x∈Λ(f)−, then the set of ω-limit points of x is an infinite minimal set. This result provides the inspiration for the construction of a map f for which Λ(f)≠.


1988 ◽  
Vol 20 (3) ◽  
pp. 573-599 ◽  
Author(s):  
Richard A. Davis ◽  
Edward Mulrow ◽  
Sidney I. Resnick

If {Xj, } is a sequence of i.i.d. random vectors in , when do there exist scaling constants bn > 0 such that the sequence of random sets converges almost surely in the space of compact subsets of to a limit set? A multivariate regular variation condition on a properly defined distribution tail guarantees the almost sure convergence but without certain regularity conditions surprises can occur. When a density exists, an exponential form of regular variation plus some regularity guarantees the convergence.


1995 ◽  
Vol 06 (01) ◽  
pp. 19-32 ◽  
Author(s):  
NIKOLAY GUSEVSKII ◽  
HELEN KLIMENKO

We construct purely loxodromic, geometrically finite, free Kleinian groups acting on S3 whose limit sets are wild Cantor sets. Our construction is closely related to the construction of the wild Fox–Artin arc.


2020 ◽  
pp. 1-12
Author(s):  
ENHUI SHI ◽  
XIANGDONG YE

Abstract We show that any action of a countable amenable group on a uniquely arcwise connected continuum has a periodic point of order $\leq 2$ .


Sign in / Sign up

Export Citation Format

Share Document