linear hamiltonian system
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 3)

H-INDEX

8
(FIVE YEARS 0)

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Nina Xue ◽  
Wencai Zhao

In this paper, we consider the reducibility of the quasiperiodic linear Hamiltonian system ẋ=A+εQt, where A is a constant matrix with possible multiple eigenvalues, Qt is analytic quasiperiodic with respect to t, and ε is a small parameter. Under some nonresonant conditions, it is proved that, for most sufficiently small ε, the Hamiltonian system can be reduced to a constant coefficient Hamiltonian system by means of a quasiperiodic symplectic change of variables with the same basic frequencies as Qt. Applications to the Schrödinger equation are also given.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Nina Xue ◽  
Wencai Zhao

In this paper, we consider the effective reducibility of the quasi-periodic linear Hamiltonian system x˙=A+εQt,εx, ε∈0,ε0, where A is a constant matrix with possible multiple eigenvalues and Q(t,ε) is analytic quasi-periodic with respect to t. Under nonresonant conditions, it is proved that this system can be reduced to y˙=A⁎ε+εR⁎t,εy, ε∈0,ε⁎, where R⁎ is exponentially small in ε, and the change of variables that perform such a reduction is also quasi-periodic with the same basic frequencies as Q.


2015 ◽  
Vol 67 (6) ◽  
pp. 1270-1289
Author(s):  
Cristian Carcamo ◽  
Claudio Vidal

AbstractIn this paper, we study the stability in the Lyapunov sense of the equilibrium solutions of discrete or difference Hamiltonian systems in the plane. First, we perform a detailed study of linear Hamiltonian systems as a function of the parameters. In particular we analyze the regular and the degenerate cases. Next, we give a detailed study of the normal form associated with the linear Hamiltonian system. At the same time we obtain the conditions under which we can get stability (in linear approximation) of the equilibrium solution, classifying all the possible phase diagrams as a function of the parameters. After that, we study the stability of the equilibrium solutions of the first order difference system in the plane associated with mechanical Hamiltonian systems and Hamiltonian systems defined by cubic polynomials. Finally, we point out important diòerences with the continuous case.


Sign in / Sign up

Export Citation Format

Share Document