Hopf Bifurcation in a Delayed Diffusive Leslie–Gower Predator–Prey Model with Herd Behavior

2019 ◽  
Vol 29 (04) ◽  
pp. 1950055
Author(s):  
Fengrong Zhang ◽  
Yan Li ◽  
Changpin Li

In this paper, we consider a delayed diffusive predator–prey model with Leslie–Gower term and herd behavior subject to Neumann boundary conditions. We are mainly concerned with the impact of time delay on the stability of this model. First, for delayed differential equations and delayed-diffusive differential equations, the stability of the positive equilibrium and the existence of Hopf bifurcation are investigated respectively. It is observed that when time delay continues to increase and crosses through some critical values, a family of homogeneous and inhomogeneous periodic solutions emerge. Then, the explicit formula for determining the stability and direction of bifurcating periodic solutions are also derived by employing the normal form theory and center manifold theorem for partial functional differential equations. Finally, some numerical simulations are shown to support the analytical results.

2018 ◽  
Vol 28 (14) ◽  
pp. 1850179 ◽  
Author(s):  
Fengrong Zhang ◽  
Xinhong Zhang ◽  
Yan Li ◽  
Changpin Li

This paper is concerned with a delayed predator–prey model with nonconstant death rate and constant-rate prey harvesting. We mainly study the impact of the time delay on the stability of positive constant solution of delayed differential equations and positive constant equilibrium of delayed diffusive differential equations, respectively. By choosing time delay [Formula: see text] as a bifurcation parameter, we show that Hopf bifurcation can occur as the time delay passes some critical values. In addition, the direction of Hopf bifurcation and the stability of bifurcating periodic solutions are determined by using the normal form theory and center manifold theorem. Finally, some numerical simulations are carried out to depict our theoretical results.


2020 ◽  
Vol 25 (1) ◽  
Author(s):  
Yan Li ◽  
Sanyun Li ◽  
Fengrong Zhang

This paper is devoted to considering a diffusive predator–prey model with Leslie–Gower term and herd behavior subject to the homogeneous Neumann boundary conditions. Concretely, by choosing the proper bifurcation parameter, the local stability of constant equilibria of this model without diffusion and the existence of Hopf bifurcation are investigated by analyzing the distribution of the eigenvalues. Furthermore, the explicit formula for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are also derived by applying the normal form theory. Next, we show the stability of positive constant equilibrium, the existence and stability of periodic solutions near positive constant equilibrium for the diffusive model. Finally, some numerical simulations are carried out to support the analytical results.


2019 ◽  
Vol 74 (7) ◽  
pp. 581-595 ◽  
Author(s):  
Saheb Pal ◽  
Subrata Majhi ◽  
Sutapa Mandal ◽  
Nikhil Pal

AbstractIn the present article, we investigate the impact of fear effect in a predator–prey model, where predator–prey interaction follows Beddington–DeAngelis functional response. We consider that due to fear of predator the birth rate of prey population reduces. Mathematical properties, such as persistence, equilibria analysis, local and global stability analysis, and bifurcation analysis, have been investigated. We observe that an increase in the cost of fear destabilizes the system and produces periodic solutions via supercritical Hopf bifurcation. However, with further increase in the strength of fear, system undergoes another Hopf bifurcation and becomes stable. The stability of the Hopf-bifurcating periodic solutions is obtained by computing the first Lyapunov coefficient. Our results suggest that fear of predation risk can have both stabilizing and destabilizing effects.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Heping Jiang ◽  
Huiping Fang ◽  
Yongfeng Wu

Abstract This paper mainly aims to consider the dynamical behaviors of a diffusive delayed predator–prey system with Smith growth and herd behavior subject to the homogeneous Neumann boundary condition. For the analysis of the predator–prey model, we have studied the existence of Hopf bifurcation by analyzing the distribution of the roots of associated characteristic equation. Then we have proved the stability of the periodic solution by calculating the normal form on the center of manifold which is associated to the Hopf bifurcation points. Some numerical simulations are also carried out in order to validate our analysis findings. The implications of our analytical and numerical findings are discussed critically.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ruizhi Yang ◽  
Yuxin Ma ◽  
Chiyu Zhang

AbstractIn this paper, we consider a diffusive predator–prey model with a time delay and prey toxicity. The effect of time delay on the stability of the positive equilibrium is studied by analyzing the eigenvalue spectrum. Delay-induced Hopf bifurcation is also investigated. By utilizing the normal form method and center manifold reduction for partial functional differential equations, the formulas for determining the property of Hopf bifurcation are given.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Changjin Xu

A class of stage-structured predator-prey model with time delay and delay-dependent parameters is considered. Its linear stability is investigated and Hopf bifurcation is demonstrated. Using normal form theory and center manifold theory, some explicit formulae for determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained. Finally, numerical simulations are performed to verify the analytical results.


2019 ◽  
Vol 29 (04) ◽  
pp. 1950043 ◽  
Author(s):  
Shanshan Chen ◽  
Junjie Wei ◽  
Kaiqi Yang

The diffusive Holling–Tanner predator–prey model with no-flux boundary conditions and nonlocal prey competition is considered in this paper. We show the existence of spatially nonhomogeneous periodic solutions, which is induced by nonlocal prey competition. In particular, the constant positive steady state may lose the stability through Hopf bifurcation when the given parameter passes through some critical values, and the bifurcating periodic solutions near such values could be spatially nonhomogeneous and orbitally asymptotically stable.


2015 ◽  
Vol 25 (11) ◽  
pp. 1550155 ◽  
Author(s):  
Chaoqun Xu ◽  
Sanling Yuan

A delayed diffusive predator–prey model with herd behavior subject to Neumann boundary conditions is studied both theoretically and numerically. Applying Hopf bifurcation analysis, we obtain the critical conditions under which the model generates spatially nonhomogeneous bifurcating periodic solutions. It is shown that the spatially homogeneous Hopf bifurcations always exist and that the spatially nonhomogeneous Hopf bifurcations will arise when the diffusion coefficients are suitably small. The explicit formulae for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by employing the normal form theory and center manifold theorems for partial functional differential equations.


2014 ◽  
Vol 07 (04) ◽  
pp. 1450042
Author(s):  
Jia Liu

In this paper, we investigate the impact of maturation delay on the positive equilibrium solutions in a stage-structured predator–prey system. By analyzing the characteristic equation we derive the conditions for the emergence of Hopf bifurcation. By applying the normal form and the center manifold argument, the direction as well as the stability of periodic solutions bifurcating from Hopf bifurcation is explored. Results show that maturation delay can change the nature of the positive equilibrium solutions, and the loss of equilibrium stability occurs as a consequence of Hopf bifurcation. When Hopf bifurcation takes place, periodic solution arises and is further demonstrated to be asymptotically stable. In addition, the periodic solutions appear only for intermediate maturation delay, that is, there exists a delay window, outside of which the positive equilibrium is locally stable. Furthermore, numerical analysis shows that Hopf bifurcation is favored by a superior competition for adult predators to juveniles, a smaller mortality on juvenile and/or adult predators, and a higher resource carrying capacity. Interestingly, increasing food carrying capacity can lead to the emergence of irregular chaotic dynamics and regular limit cycles.


2018 ◽  
Vol 28 (08) ◽  
pp. 1850099 ◽  
Author(s):  
Ruizhi Yang ◽  
Chunrui Zhang ◽  
Yazhuo Zhang

The predator–prey model is fundamentally important to study the growth law of the population in nature. In this paper, we propose a diffusive predator–prey model, in which we also consider time delay in the gestation time of predator and Michaelis–Menten type predator harvesting. By analyzing the distribution of eigenvalues, we investigate the stability of the coexisting equilibrium and the existence of Hopf bifurcation using time delay as bifurcation parameter. We analyze the property of Hopf bifurcation, and give an explicit formula for determining the direction and the stability of Hopf bifurcation. Finally, some numerical simulations are given to support our results.


Sign in / Sign up

Export Citation Format

Share Document