Bifurcation Sequences and Multistability in a Two-Dimensional Piecewise Linear Map

2020 ◽  
Vol 30 (06) ◽  
pp. 2030014
Author(s):  
Wirot Tikjha ◽  
Laura Gardini

Bifurcation mechanisms in piecewise linear or piecewise smooth maps are quite different with respect to those occurring in smooth maps, due to the role played by the borders. In this work, we describe bifurcation mechanisms associated with the appearance/disappearance of cycles, which may be related to several cases: (A) fold border collision bifurcations, (B) degenerate flip bifurcations, supercritical and subcritical, (C) degenerate transcritical bifurcations and (D) supercritical center bifurcations. Each of these is characterized by a particular dynamic behavior, and may be related to attracting or repelling cycles. We consider different bifurcation routes, showing the interplay between all these kinds of bifurcations, and their role in the phase plane in determining attracting sets and basins of attraction.

2009 ◽  
Vol 19 (05) ◽  
pp. 1709-1732 ◽  
Author(s):  
B. M. BAKER ◽  
M. E. KIDWELL ◽  
R. P. KLINE ◽  
I. POPOVICI

We study the orbits, stability and coexistence of orbits in the two-dimensional dynamical system introduced by Kline and Baker to model cardiac rhythmic response to periodic stimulation — as a function of (a) kinetic parameters (two amplitudes, two rate constants) and (b) stimulus period. The original paper focused mostly on the one-dimensional version of this model (one amplitude, one rate constant), whose orbits, stability properties, and bifurcations were analyzed via the theory of skew-tent (hence unimodal) maps; the principal family of orbits were so-called "n-escalators", with n a positive integer. The two-dimensional analog (motivated by experimental results) has led to the current study of continuous, piecewise smooth maps of a polygonal planar region into itself, whose dynamical behavior includes the coexistence of stable orbits. Our principal results show (1) how the amplitude parameters control which escalators can come into existence, (2) escalator bifurcation behavior as the stimulus period is lowered — leading to a "1/n bifurcation law", and (3) the existence of basins of attraction via the coexistence of three orbits (two of them stable, one unstable) at the first (largest stimulus period) bifurcation. We consider the latter result our most important, as it is conjectured to be connected with arrhythmia.


2019 ◽  
Vol 29 (07) ◽  
pp. 1930017
Author(s):  
Viktor Avrutin ◽  
Zhanybai T. Zhusubaliyev

The paper describes how several coexisting stable closed invariant curves embedded into each other can arise in a two-dimensional piecewise-linear normal form map. Phenomena of this type have been recently reported for a piecewise smooth map, modeling the behavior of a power electronic DC–DC converter. In the present work, we demonstrate that this type of multistability exists in a more general class of models and show how it may result from the well-known period adding bifurcation structure due to its deformation so that the phase-locking regions start to overlap. We explain how this overlapping structure is related to the appearance of coexisting stable closed invariant curves nested into each other. By means of detailed, numerically calculated phase portraits we hereafter present an example of this type of multistability. We also demonstrate that the basins of attraction of the nested stable invariant curves may be separated from each other not only by repelling closed invariant curves, as previously reported, but also by a chaotic saddle. It is suggested that the considered kind of multistability is a generic phenomenon in piecewise smooth dynamical systems.


2008 ◽  
Vol 18 (04) ◽  
pp. 1029-1050 ◽  
Author(s):  
IRYNA SUSHKO ◽  
LAURA GARDINI

In this work we study some properties associated with the border-collision bifurcations in a two-dimensional piecewise-linear map in canonical form, related to the case where a fixed point of one of the linear maps has complex eigenvalues and undergoes a center bifurcation when its eigenvalues pass through the unit circle. This problem is faced in several applied piecewise-smooth models, such as switching electrical circuits, impacting mechanical systems, business cycle models in economics, etc. We prove the existence of an invariant region in the phase space for parameter values related to the center bifurcation and explain the origin of a closed invariant attracting curve after the bifurcation. This problem is related also to particular border-collision bifurcations leading to such curves which may coexist with other attractors. We show how periodicity regions in the parameter space differ from Arnold tongues occurring in smooth models in case of the Neimark–Sacker bifurcation, how so-called dangerous border-collision bifurcations may occur, as well as multistability. We give also an example of a subcritical center bifurcation which may be considered as a piecewise-linear analogue of the subcritical Neimark–Sacker bifurcation.


2008 ◽  
Vol 18 (02) ◽  
pp. 577-586 ◽  
Author(s):  
INDRAVA ROY ◽  
A. R. ROY

Piecewise smooth maps have been a focus of study for scientists in a wide range of research fields. These maps show qualitatively different types of bifurcations than those exhibited by generic smooth maps. We present a theoretical framework for analyzing three-dimensional piecewise smooth maps by deriving a suitable normal form and then finding the stability criteria for periodic orbits. We also show by numerical simulation different types of border collision bifurcations that can occur in such a map. We have also been able to observe a border collision bifurcation from a period-2 to a quasiperiodic orbit.


2014 ◽  
Vol 30 (5) ◽  
pp. 583-597
Author(s):  
Donggyu Lee ◽  
Dongjin Lee ◽  
Hyunje Choi ◽  
Sungbae Jo

Sign in / Sign up

Export Citation Format

Share Document