Comparison of Selected Swarm Intelligence Algorithms in Student Courses Recommendation Application

Author(s):  
Janusz Sobecki

In this paper a comparison of a few swarm intelligence algorithms applied in recommendation of student courses is presented. Swarm intelligence algorithms are nowadays successfully used in many areas, especially in optimization problems. To apply each swarm intelligence algorithm in recommender systems a special representation of the problem space is necessary. Here we present the comparison of efficiency of grade prediction of several evolutionary algorithms, such as: Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Intelligent Weed Optimization (IWO), Bee Colony Optimization (BCO) and Bat Algorithm (BA).

Author(s):  
Shi Cheng ◽  
Yuhui Shi ◽  
Quande Qin

Premature convergence occurs in swarm intelligence algorithms searching for optima. A swarm intelligence algorithm has two kinds of abilities: the exploration of new possibilities and the exploitation of old certainties. The exploration ability means that an algorithm can explore more search places to increase the possibility that the algorithm can find good enough solutions. In contrast, the exploitation ability means that an algorithm focuses on the refinement of found promising areas. An algorithm should have a balance between exploration and exploitation, that is, the allocation of computational resources should be optimized to ensure that an algorithm can find good enough solutions effectively. The diversity measures the distribution of individuals' information. From the observation of the distribution and diversity change, the degree of exploration and exploitation can be obtained.


Author(s):  
Megha Vora ◽  
T. T. Mirnalinee

In the past two decades, Swarm Intelligence (SI)-based optimization techniques have drawn the attention of many researchers for finding an efficient solution to optimization problems. Swarm intelligence techniques are characterized by their decentralized way of working that mimics the behavior of colony of ants, swarm of bees, flock of birds, or school of fishes. Algorithmic simplicity and effectiveness of swarm intelligence techniques have made it a powerful tool for solving global optimization problems. Simulation studies of the graceful, but unpredictable, choreography of bird flocks led to the design of the particle swarm optimization algorithm. Studies of the foraging behavior of ants resulted in the development of ant colony optimization algorithm. This chapter provides insight into swarm intelligence techniques, specifically particle swarm optimization and its variants. The objective of this chapter is twofold: First, it describes how swarm intelligence techniques are employed to solve various optimization problems. Second, it describes how swarm intelligence techniques are efficiently applied for clustering, by imposing clustering as an optimization problem.


2016 ◽  
pp. 1519-1544 ◽  
Author(s):  
Megha Vora ◽  
T. T. Mirnalinee

In the past two decades, Swarm Intelligence (SI)-based optimization techniques have drawn the attention of many researchers for finding an efficient solution to optimization problems. Swarm intelligence techniques are characterized by their decentralized way of working that mimics the behavior of colony of ants, swarm of bees, flock of birds, or school of fishes. Algorithmic simplicity and effectiveness of swarm intelligence techniques have made it a powerful tool for solving global optimization problems. Simulation studies of the graceful, but unpredictable, choreography of bird flocks led to the design of the particle swarm optimization algorithm. Studies of the foraging behavior of ants resulted in the development of ant colony optimization algorithm. This chapter provides insight into swarm intelligence techniques, specifically particle swarm optimization and its variants. The objective of this chapter is twofold: First, it describes how swarm intelligence techniques are employed to solve various optimization problems. Second, it describes how swarm intelligence techniques are efficiently applied for clustering, by imposing clustering as an optimization problem.


Author(s):  
I. I. Aina ◽  
C. N. Ejieji

In this paper, a new metaheuristic algorithm named refined heuristic intelligence swarm (RHIS) algorithm is developed from an existing particle swarm optimization (PSO) algorithm by introducing a disturbing term to the velocity of PSO and modifying the inertia weight, in which the comparison between the two algorithms is also addressed.


2019 ◽  
Vol 8 (3) ◽  
pp. 8259-8265

Particle swarm optimization (PSO) is one of the most capable algorithms that reside to the swarm intelligence (SI) systems. Recently, it becomes very popular and renowned because of the easy implementation in complex/real life optimization problems. However, PSO has some observable drawbacks such as diversity maintenance, pre convergence and/or slow convergence speed. The ultimate success of PSO depends on the velocity update of the particles. Velocity has a significant dependence on its multiplied coefficient like inertia weight and acceleration factors. To increase the ability of PSO, this paper introduced an enriched PSO (namely ePSO), to solve hard optimization problems more precisely, efficiently and reliably. In ePSO novel gradually decreased inertia weight (as an alternative of a fixed constant value) and new gradually decreased and/or increased acceleration factors (meant for cognitive and social modules) is introduced. Proposed ePSO is used to solve four well known typical unconstrained benchmark functions and four complex unconstrained real life problems. The overall observation shows that proposed new algorithm ePSO is fitter than the compared algorithms significantly and statistically. Moreover, the convergence accuracy and speed of ePSO are also improved effectively


Author(s):  
Mohammed Ajuji ◽  
Aliyu Abubakar ◽  
Datti, Useni Emmanuel

Nature-inspired algorithms are very popular tools for solving optimization problems inspired by nature. However, there is no guarantee that optimal solution can be obtained using a randomly selected algorithm. As such, the problem can be addressed using trial and error via the use of different optimization algorithms. Therefore, the proposed study in this paper analyzes the time-complexity and efficacy of some nature-inspired algorithms which includes Artificial Bee Colony, Bat Algorithm and Particle Swarm Optimization. For each algorithm used, experiments were conducted several times with iterations and comparative analysis was made. The result obtained shows that Artificial Bee Colony outperformed other algorithms in terms of the quality of the solution, Particle Swarm Optimization is time efficient while Artificial Bee Colony yield a worst case scenario in terms of time complexity.


Author(s):  
Sushruta Mishra ◽  
Brojo Kishore Mishra ◽  
Hrudaya Kumar Tripathy

The techniques inspired from the nature based evolution and aggregated nature of social colonies have been promising and shown excellence in handling complicated optimization problems thereby gaining huge popularity recently. These methodologies can be used as an effective problem solving tool thereby acting as an optimizing agent. Such techniques are called Bio inspired computing. Our study surveys the recent advances in biologically inspired swarm optimization methods and Evolutionary methods, which may be applied in various fields. Four real time scenarios are demonstrated in the form of case studies to show the significance of bio inspired algorithms. The techniques that are illustrated here include Differential Evolution, Genetic Search, Particle Swarm optimization and artificial bee Colony optimization. The results inferred by implanting these techniques are highly encouraging.


Sign in / Sign up

Export Citation Format

Share Document