APPROXIMATING THE DIAMETER, WIDTH, SMALLEST ENCLOSING CYLINDER, AND MINIMUM-WIDTH ANNULUS

2002 ◽  
Vol 12 (01n02) ◽  
pp. 67-85 ◽  
Author(s):  
TIMOTHY M. CHAN

We study (1+ε)-factor approximation algorithms for several well-known optimization problems on a given n-point set: (a) diameter, (b) width, (c) smallest enclosing cylinder, and (d) minimum-width annulus. Among our results are new simple algorithms for (a) and (c) with an improved dependence of the running time on ε, as well as the first linear-time approximation algorithm for (d) in any fixed dimension. All four problems can be solved within a time bound of the form O(n+ε-c) or O(n log (1/ε)+ε-c).

2005 ◽  
Vol 1 (1) ◽  
pp. 107-122 ◽  
Author(s):  
Doratha E. Drake Vinkemeier ◽  
Stefan Hougardy

2011 ◽  
Vol 474-476 ◽  
pp. 924-927 ◽  
Author(s):  
Xiao Xin

Given an undirected graph G=(V, E) with real nonnegative weights and + or – labels on its edges, the correlation clustering problem is to partition the vertices of G into clusters to minimize the total weight of cut + edges and uncut – edges. This problem is APX-hard and has been intensively studied mainly from the viewpoint of polynomial time approximation algorithms. By way of contrast, a fixed-parameter tractable algorithm is presented that takes treewidth as the parameter, with a running time that is linear in the number of vertices of G.


2002 ◽  
Vol 13 (04) ◽  
pp. 613-627 ◽  
Author(s):  
RENAUD LEPÈRE ◽  
DENIS TRYSTRAM ◽  
GERHARD J. WOEGINGER

This work presents approximation algorithms for scheduling the tasks of a parallel application that are subject to precedence constraints. The considered tasks are malleable which means that they may be executed on a varying number of processors in parallel. The considered objective criterion is the makespan, i.e., the largest task completion time. We demonstrate a close relationship between this scheduling problem and one of its subproblems, the allotment problem. By exploiting this relationship, we design a polynomial time approximation algorithm with performance guarantee arbitrarily close to [Formula: see text] for the special case of series parallel precedence constraints and for the special case of precedence constraints of bounded width. These special cases cover the important situation of tree structured precedence constraints. For arbitrary precedence constraints, we give a polynomial time approximation algorithm with performance guarantee [Formula: see text].


2006 ◽  
Vol 16 (02n03) ◽  
pp. 227-248 ◽  
Author(s):  
OVIDIU DAESCU ◽  
JUN LUO

We present approximation algorithms for cutting out a polygon P with n vertices from another convex polygon Q with m vertices by line cuts and ray cuts. For line cuts we require both P and Q are convex while for ray cuts we require Q is convex and P is ray cuttable. Our results answer a number of open problems and are either the first solutions or significantly improve over previously known solutions. For the line cutting version, we prove a key property that leads to a simple, constant factor approximation algorithm. For the ray cutting version, we prove it is possible to compute in almost linear time a cutting sequence that is an O( log 2 n)-factor approximation of an optimal cutting sequence. No algorithms were previously known for the ray cutting version.


Sign in / Sign up

Export Citation Format

Share Document