scholarly journals ON THE COMPLEXITY OF THE WHITEHEAD MINIMIZATION PROBLEM

2007 ◽  
Vol 17 (08) ◽  
pp. 1611-1634 ◽  
Author(s):  
ABDÓ ROIG ◽  
ENRIC VENTURA ◽  
PASCAL WEIL

The Whitehead minimization problem consists in finding a minimum size element in the automorphic orbit of a word, a cyclic word or a finitely generated subgroup in a finite rank free group. We give the first fully polynomial algorithm to solve this problem, that is, an algorithm that is polynomial both in the length of the input word and in the rank of the free group. Earlier algorithms had an exponential dependency in the rank of the free group. It follows that the primitivity problem — to decide whether a word is an element of some basis of the free group — and the free factor problem can also be solved in polynomial time.

1987 ◽  
Vol 36 (1) ◽  
pp. 153-160 ◽  
Author(s):  
R. G. Burns ◽  
A. Karrass ◽  
D. Solitar

An example is given of an infinite cyclic extension of a free group of finite rank in which not every finitely generated subgroup is finitely separable. This answers negatively the question of Peter Scott as to whether in all finitely generated 3-manifold groups the finitely generated subgroups are finitely separable. In the positive direction it is shown that in knot groups and one-relator groups with centre, the finitely generated normal subgroups are finitely separable.


2010 ◽  
Vol 20 (03) ◽  
pp. 343-355 ◽  
Author(s):  
JEREMY MACDONALD

We show that the compressed word problem in a finitely generated fully residually free group ([Formula: see text]-group) is decidable in polynomial time, and use this result to show that the word problem in the automorphism group of an [Formula: see text]-group is decidable in polynomial time.


2008 ◽  
Vol 18 (02) ◽  
pp. 375-405 ◽  
Author(s):  
FRÉDÉRIQUE BASSINO ◽  
CYRIL NICAUD ◽  
PASCAL WEIL

We give an efficient algorithm to randomly generate finitely generated subgroups of a given size, in a finite rank free group. Here, the size of a subgroup is the number of vertices of its representation by a reduced graph such as can be obtained by the method of Stallings foldings. Our algorithm randomly generates a subgroup of a given size n, according to the uniform distribution over size n subgroups. In the process, we give estimates of the number of size n subgroups, of the average rank of size n subgroups, and of the proportion of such subgroups that have finite index. Our algorithm has average case complexity [Formula: see text] in the RAM model and [Formula: see text] in the bitcost model.


2001 ◽  
Vol 11 (04) ◽  
pp. 405-445 ◽  
Author(s):  
S. MARGOLIS ◽  
M. SAPIR ◽  
P. WEIL

We relate the problem of computing the closure of a finitely generated subgroup of the free group in the pro-V topology, where V is a pseudovariety of finite groups, with an extension problem for inverse automata which can be stated as follows: given partial one-to-one maps on a finite set, can they be extended into permutations generating a group in V? The two problems are equivalent when V is extension-closed. Turning to practical computations, we modify Ribes and Zalesskiĭ's algorithm to compute the pro-p closure of a finitely generated subgroup of the free group in polynomial time, and to effectively compute its pro-nilpotent closure. Finally, we apply our results to a problem in finite monoid theory, the membership problem in pseudovarieties of inverse monoids which are Mal'cev products of semilattices and a pseudovariety of groups. Résumé: Nous établissons un lien entre le problème du calcul de l'adhéerence d'un sous-groupe finiment engendré du groupe libre dans la topologie pro-V, oú V est une pseudovariété de groupes finis, et un probléme d'extension pour les automates inversifs qui peut être énoncé de la faç con suivante: étant données des transformations partielles injectives d'un ensemble fini, peuvent-elles être étendues en des permutations qui engendrent un groupe dans V? Les deux problèmes sont équivalents si V est fermée par extensions. Nous intéressant ensuite aux calculs pratiques, nous modifions l'algorithme de Ribes et Zalesskiĭ pour calculer l'adhérence pro-p d'un sous-groupe finiment engendré du groupe libre en temps polynomial et pour calculer effectivement sa clôture pro-nilpotente. Enfin nous appliquons nos résultats à un problème de théorie des monoïdes finis, celui de de l'appartenance dans les pseudovariétés de monoïdes inversifs qui sont des produits de Mal'cev de demi-treillis et d'une pseudovariété de groupes.


2021 ◽  
Vol volume 13, issue 2 ◽  
Author(s):  
Arman Darbinyan ◽  
Rostislav Grigorchuk ◽  
Asif Shaikh

For finitely generated subgroups $H$ of a free group $F_m$ of finite rank $m$, we study the language $L_H$ of reduced words that represent $H$ which is a regular language. Using the (extended) core of Schreier graph of $H$, we construct the minimal deterministic finite automaton that recognizes $L_H$. Then we characterize the f.g. subgroups $H$ for which $L_H$ is irreducible and for such groups explicitly construct ergodic automaton that recognizes $L_H$. This construction gives us an efficient way to compute the cogrowth series $L_H(z)$ of $H$ and entropy of $L_H$. Several examples illustrate the method and a comparison is made with the method of calculation of $L_H(z)$ based on the use of Nielsen system of generators of $H$.


Author(s):  
MICHAEL BEN–ZVI ◽  
ROBERT KROPHOLLER ◽  
RYLEE ALANZA LYMAN

Abstract In a seminal paper, Stallings introduced folding of morphisms of graphs. One consequence of folding is the representation of finitely-generated subgroups of a finite-rank free group as immersions of finite graphs. Stallings’s methods allow one to construct this representation algorithmically, giving effective, algorithmic answers and proofs to classical questions about subgroups of free groups. Recently Dani–Levcovitz used Stallings-like methods to study subgroups of right-angled Coxeter groups, which act geometrically on CAT(0) cube complexes. In this paper we extend their techniques to fundamental groups of non-positively curved cube complexes.


1986 ◽  
Vol 29 (2) ◽  
pp. 204-207 ◽  
Author(s):  
R. G. Burns ◽  
Wilfried Imrich ◽  
Brigitte Servatius

AbstractThe first result gives a (modest) improvement of the best general bound known to date for the rank of the intersection U ∩ V of two finite-rank subgroups of a free group F in terms of the ranks of U and V. In the second result it is deduced from that bound that if A is a finite-rank subgroup of F and B < F is non-cyclic, then the index of A ∩ B in B, if finite, is less than 2(rank(A) - 1), whence in particular if rank (A) = 2, then B ≤ A. (This strengthens a lemma of Gersten.) Finally a short proof is given of Stallings' result that if U, V (as above) are such that U ∩ V has finite index in both U and V, then it has finite index in their join 〈U, V〉.


2021 ◽  
Vol volume 13, issue 2 ◽  
Author(s):  
Arman Darbinyan ◽  
Rostislav Grigorchuk ◽  
Asif Shaikh

For finitely generated subgroups $H$ of a free group $F_m$ of finite rank $m$, we study the language $L_H$ of reduced words that represent $H$ which is a regular language. Using the (extended) core of Schreier graph of $H$, we construct the minimal deterministic finite automaton that recognizes $L_H$. Then we characterize the f.g. subgroups $H$ for which $L_H$ is irreducible and for such groups explicitly construct ergodic automaton that recognizes $L_H$. This construction gives us an efficient way to compute the cogrowth series $L_H(z)$ of $H$ and entropy of $L_H$. Several examples illustrate the method and a comparison is made with the method of calculation of $L_H(z)$ based on the use of Nielsen system of generators of $H$.


Author(s):  
Michele Rossi ◽  
Lea Terracini

AbstractLet X be a $$\mathbb {Q}$$ Q -factorial complete toric variety over an algebraic closed field of characteristic 0. There is a canonical injection of the Picard group $$\mathrm{Pic}(X)$$ Pic ( X ) in the group $$\mathrm{Cl}(X)$$ Cl ( X ) of classes of Weil divisors. These two groups are finitely generated abelian groups; while the first one is a free group, the second one may have torsion. We investigate algebraic and geometrical conditions under which the image of $$\mathrm{Pic}(X)$$ Pic ( X ) in $$\mathrm{Cl}(X)$$ Cl ( X ) is contained in a free part of the latter group.


2011 ◽  
Vol 21 (04) ◽  
pp. 595-614 ◽  
Author(s):  
S. LIRIANO ◽  
S. MAJEWICZ

If G is a finitely generated group and A is an algebraic group, then RA(G) = Hom (G, A) is an algebraic variety. Define the "dimension sequence" of G over A as Pd(RA(G)) = (Nd(RA(G)), …, N0(RA(G))), where Ni(RA(G)) is the number of irreducible components of RA(G) of dimension i (0 ≤ i ≤ d) and d = Dim (RA(G)). We use this invariant in the study of groups and deduce various results. For instance, we prove the following: Theorem A.Let w be a nontrivial word in the commutator subgroup ofFn = 〈x1, …, xn〉, and letG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety andV-1 = {ρ | ρ ∈ RSL(2, ℂ)(Fn), ρ(w) = -I} ≠ ∅, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). Theorem B.Let w be a nontrivial word in the free group on{x1, …, xn}with even exponent sum on each generator and exponent sum not equal to zero on at least one generator. SupposeG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). We also show that if G = 〈x1, . ., xn, y; W = yp〉, where p ≥ 1 and W is a word in Fn = 〈x1, …, xn〉, and A = PSL(2, ℂ), then Dim (RA(G)) = Max {3n, Dim (RA(G′)) +2 } ≤ 3n + 1 for G′ = 〈x1, …, xn; W = 1〉. Another one of our results is that if G is a torus knot group with presentation 〈x, y; xp = yt〉 then Pd(RSL(2, ℂ)(G))≠Pd(RPSL(2, ℂ)(G)).


Sign in / Sign up

Export Citation Format

Share Document