scholarly journals Intersection problem for Droms RAAGs

2018 ◽  
Vol 28 (07) ◽  
pp. 1129-1162
Author(s):  
Jordi Delgado ◽  
Enric Ventura ◽  
Alexander Zakharov

We solve the subgroup intersection problem (SIP) for any RAAG [Formula: see text] of Droms type (i.e. with defining graph not containing induced squares or paths of length [Formula: see text]): there is an algorithm which, given finite sets of generators for two subgroups [Formula: see text], decides whether [Formula: see text] is finitely generated or not, and, in the affirmative case, it computes a set of generators for [Formula: see text]. Taking advantage of the recursive characterization of Droms groups, the proof consists in separately showing that the solvability of SIP passes through free products, and through direct products with free-abelian groups. We note that most of RAAGs are not Howson, and many (e.g. [Formula: see text]) even have unsolvable SIP.

2014 ◽  
Vol 24 (05) ◽  
pp. 609-653 ◽  
Author(s):  
Alan J. Cain ◽  
Victor Maltcev

A group is Markov if it admits a prefix-closed regular language of unique representatives with respect to some generating set, and strongly Markov if it admits such a language of unique minimal-length representatives over every generating set. This paper considers the natural generalizations of these concepts to semigroups and monoids. Two distinct potential generalizations to monoids are shown to be equivalent. Various interesting examples are presented, including an example of a non-Markov monoid that nevertheless admits a regular language of unique representatives over any generating set. It is shown that all finitely generated commutative semigroups are strongly Markov, but that finitely generated subsemigroups of virtually abelian or polycyclic groups need not be. Potential connections with word-hyperbolic semigroups are investigated. A study is made of the interaction of the classes of Markov and strongly Markov semigroups with direct products, free products, and finite-index subsemigroups and extensions. Several questions are posed.


Author(s):  
Rachid Ech-chaouy ◽  
Abdelouahab Idelhadj ◽  
Rachid Tribak

A module [Formula: see text] is called coseparable ([Formula: see text]-coseparable) if for every submodule [Formula: see text] of [Formula: see text] such that [Formula: see text] is finitely generated ([Formula: see text] is simple), there exists a direct summand [Formula: see text] of [Formula: see text] such that [Formula: see text] and [Formula: see text] is finitely generated. In this paper, we show that free modules are coseparable. We also investigate whether or not the ([Formula: see text]-)coseparability is stable under taking submodules, factor modules, direct summands, direct sums and direct products. We show that a finite direct sum of coseparable modules is not, in general, coseparable. But the class of [Formula: see text]-coseparable modules is closed under finite direct sums. Moreover, it is shown that the class of coseparable modules over noetherian rings is closed under finite direct sums. A characterization of coseparable modules over noetherian rings is provided. It is also shown that every lifting (H-supplemented) module is coseparable ([Formula: see text]-coseparable).


2013 ◽  
Vol 56 (3) ◽  
pp. 477-490 ◽  
Author(s):  
Adlene Ayadi

Abstract.We give a characterization of hypercyclic abelian group 𝒢 of affine maps on ℂn. If G is finitely generated, this characterization is explicit. We prove in particular that no abelian group generated by n affine maps on Cn has a dense orbit.


2008 ◽  
Vol 137 (03) ◽  
pp. 811-813 ◽  
Author(s):  
Jason A. Behrstock ◽  
Tadeusz Januszkiewicz ◽  
Walter D. Neumann

2018 ◽  
Vol 30 (4) ◽  
pp. 877-885
Author(s):  
Luise-Charlotte Kappe ◽  
Patrizia Longobardi ◽  
Mercede Maj

Abstract It is well known that the set of commutators in a group usually does not form a subgroup. A similar phenomenon occurs for the set of autocommutators. There exists a group of order 64 and nilpotency class 2, where the set of autocommutators does not form a subgroup, and this group is of minimal order with this property. However, for finite abelian groups, the set of autocommutators is always a subgroup. We will show in this paper that this is no longer true for infinite abelian groups. We characterize finitely generated infinite abelian groups in which the set of autocommutators does not form a subgroup and show that in an infinite abelian torsion group the set of commutators is a subgroup. Lastly, we investigate torsion-free abelian groups with finite automorphism group and we study whether the set of autocommutators forms a subgroup in those groups.


Author(s):  
A. R. Shastri

AbstractIf G, H and B are groups such that G × B ≃ H × B, G/[G, G]. Z(G) is free abelian and B is finitely generated abelian, then G ≃ H. The equivalence classes of triples (Vξ,A) where Vand A are finitely generated free abelian groups and ξ: V⊗ V → A is a bilinear form constitute a semigroup B undera natural external orthogonal sum. This semigroup B is cancellative. A cancellation theorem for class 2 nilpotent groups is deduced.


Sign in / Sign up

Export Citation Format

Share Document