scholarly journals Some cancellation theorems

Author(s):  
A. R. Shastri

AbstractIf G, H and B are groups such that G × B ≃ H × B, G/[G, G]. Z(G) is free abelian and B is finitely generated abelian, then G ≃ H. The equivalence classes of triples (Vξ,A) where Vand A are finitely generated free abelian groups and ξ: V⊗ V → A is a bilinear form constitute a semigroup B undera natural external orthogonal sum. This semigroup B is cancellative. A cancellation theorem for class 2 nilpotent groups is deduced.

1994 ◽  
Vol 37 (4) ◽  
pp. 433-436 ◽  
Author(s):  
R. B. J. T. Allenby

AbstractWe show that, even under very favourable hypotheses, a polygonal product of finitely generated torsion free nilpotent groups amalgamating infinite cyclic subgroups is, in general, not residually finite, thus answering negatively a question of C. Y. Tang. A second example shows similar kinds of limitations apply even when the factors of the product are free abelian groups.


1996 ◽  
Vol 19 (3) ◽  
pp. 539-544 ◽  
Author(s):  
Peter Hilton ◽  
Robert Militello

A nilpotent groupGis fgp ifGp, is finitely generated (fg) as ap-local group for all primesp; it is fg-like if there exists a nilpotent fg groupHsuch thatGp≃Hpfor all primesp. The fgp nilpotent groups form a (generalized) Serre class; the fg-like nilpotent groups do not. However, for abelian groups, a subgroup of an fg-like group is fg-like, and an extension of an fg-like group by an fg-like group is fg-like. These properties persist for nilpotent groups with finite commutator subgroup, but fail in general.


Author(s):  
Thomas A. Fournelle

AbstractRational abelian groups, that is, torsion-free abelian groups of rank one, are characterized by their types. This paper characterizes rational nilpotent groups of class two, that is, nilpotent groups of class two in which the center and central factor group are direct sums of rational abelian groups. This characterization is done according to the types of the summands of the center and the central factor group. Using these types and some cohomological techniques it is possible to determine the automorphism group of the nilpotent group in question by performing essentially matrix computations.In particular, the automorphism groups of rational nilpotent groups of class two and rank three are completely described. Specific examples are given of semicomplete and pseudocomplete nilpotent groups.


1998 ◽  
Vol 58 (3) ◽  
pp. 479-493 ◽  
Author(s):  
Francis Oger

We show that two finitely generated finite-by-nilpotent groups are elementarily equivalent if and only if they satisfy the same sentences with two alternations of quantifiers. For each integer n ≥ 2, we prove the same result for the following classes of structures:(1) the (n + 2)-tuples (A1, …, An+1, f), where A1, …, An+1 are disjoint finitely generated Abelian groups and f: A1 × … × An → An+1 is a n-linear map;(2) the triples (A, B, f), where A, B are disjoint finitely generated Abelian groups and f: An → B is a n-linear map;(3) the pairs (A, f), where A is a finitely generated Abelian group and f: An → A is a n-linear map.In the proof, we use some properties of commutative rings associated to multilinear maps.


2018 ◽  
Vol 30 (4) ◽  
pp. 877-885
Author(s):  
Luise-Charlotte Kappe ◽  
Patrizia Longobardi ◽  
Mercede Maj

Abstract It is well known that the set of commutators in a group usually does not form a subgroup. A similar phenomenon occurs for the set of autocommutators. There exists a group of order 64 and nilpotency class 2, where the set of autocommutators does not form a subgroup, and this group is of minimal order with this property. However, for finite abelian groups, the set of autocommutators is always a subgroup. We will show in this paper that this is no longer true for infinite abelian groups. We characterize finitely generated infinite abelian groups in which the set of autocommutators does not form a subgroup and show that in an infinite abelian torsion group the set of commutators is a subgroup. Lastly, we investigate torsion-free abelian groups with finite automorphism group and we study whether the set of autocommutators forms a subgroup in those groups.


1989 ◽  
Vol 32 (1) ◽  
pp. 11-17 ◽  
Author(s):  
R. B. J. T. Allenby ◽  
C. Y. Tang

AbstractWe give examples to show that unlike generalized free products of groups (g.f.p.) polygonal products of finitely generated (f.g.) nilpotent groups with cyclic amalgamations need not be residually finite (R) and polygonal products of finite p-groups with cyclic amalgamations need not be residually nilpotent. However, polygonal products f.g. abelian groups are R, and under certain conditions polygonal products of finite p-groups with cyclic amalgamations are R.


2015 ◽  
Vol 59 (1) ◽  
pp. 143-168 ◽  
Author(s):  
S. Kaliszewski ◽  
Alex Kumjian ◽  
John Quigg ◽  
Aidan Sims

AbstractWe investigate topological realizations of higher-rank graphs. We show that the fundamental group of a higher-rank graph coincides with the fundamental group of its topological realization. We also show that topological realization of higher-rank graphs is a functor and that for each higher-rank graphΛ, this functor determines a category equivalence between the category of coverings ofΛand the category of coverings of its topological realization. We discuss how topological realization relates to two standard constructions fork-graphs: projective limits and crossed products by finitely generated free abelian groups.


2018 ◽  
Vol 28 (07) ◽  
pp. 1129-1162
Author(s):  
Jordi Delgado ◽  
Enric Ventura ◽  
Alexander Zakharov

We solve the subgroup intersection problem (SIP) for any RAAG [Formula: see text] of Droms type (i.e. with defining graph not containing induced squares or paths of length [Formula: see text]): there is an algorithm which, given finite sets of generators for two subgroups [Formula: see text], decides whether [Formula: see text] is finitely generated or not, and, in the affirmative case, it computes a set of generators for [Formula: see text]. Taking advantage of the recursive characterization of Droms groups, the proof consists in separately showing that the solvability of SIP passes through free products, and through direct products with free-abelian groups. We note that most of RAAGs are not Howson, and many (e.g. [Formula: see text]) even have unsolvable SIP.


Author(s):  
P. Schultz ◽  
C. Vinsonhaler ◽  
W. J. Wickless

AbstractWe define an equivalence relation on the class of torsion-free abelian groups under which two groups are equivalent ifevery pure subgroup of one has a non-zero image in the other, and each has a non-zero image in every torsion-free factor of the other.We study the closure properties of the equivalence classes, and the structural properties of the class of all equivalence classes. Finally we identify a class of groups which satisfy Krull-Schmidt and Jordan-Hölder properties with respect to the equivalence.


1994 ◽  
Vol 50 (2) ◽  
pp. 177-195 ◽  
Author(s):  
Theodore G. Faticoni

We use a variation on a construction due to Corner 1965 to construct (Abelian) groups A that are torsion as modules over the ring End (A) of group endomorphisms of A. Some applications include the failure of the Baer-Kaplansky Theorem for Z[X]. There is a countable reduced torsion-free group A such that IA = A for each maximal ideal I in the countable commutative Noetherian integral domain, End (A). Also, there is a countable integral domain R and a countable. R-module A such that (1) R = End(A), (2) T0 ⊗RA ≠ 0 for each nonzero finitely generated (respectively finitely presented) R-module T0, but (3) T ⊗RA = 0 for some nonzero (respectively nonzero finitely generated). R-module T.


Sign in / Sign up

Export Citation Format

Share Document