scholarly journals Structure of principal one-sided ideals

Author(s):  
James East

We give a thorough structural analysis of the principal one-sided ideals of arbitrary semigroups, and then apply this to full transformation semigroups and symmetric inverse monoids. One-sided ideals of these semigroups naturally occur as semigroups of transformations with restricted range or kernel.

2011 ◽  
Vol 18 (03) ◽  
pp. 523-532 ◽  
Author(s):  
Lei Sun ◽  
Weina Deng ◽  
Huisheng Pei

The paper is concerned with the so-called natural order on the semigroup [Formula: see text], where [Formula: see text] is the full transformation semigroup on a set X, E is a non-trivial equivalence on X and R is a cross-section of the partition X/E induced by E. We determine when two elements of TE(X,R) are related under this order, find elements of TE(X,R) which are compatible with ≤ on TE(X,R), and observe the maximal and minimal elements and the covering elements.


2005 ◽  
Vol 71 (1) ◽  
pp. 69-74 ◽  
Author(s):  
Gonca Ayik ◽  
Hayrullah Ayik ◽  
Yusuf Ünlü ◽  
John M. Howie

The index and period of an element a of a finite semigroup are the smallest values of m ≥ 1 and r ≥ 1 such that am+r = am. An element with index m and period 1 is called an m-potent element. For an element α of a finite full transformation semigroup with index m and period r, a unique factorisation α = σβ such that Shift(σ) ∩ Shift(β) = ∅ is obtained, where σ is a permutation of order r and β is an m-potent. Some applications of this factorisation are given.


1982 ◽  
Vol 23 (2) ◽  
pp. 137-149 ◽  
Author(s):  
Mary Snowden ◽  
J. M. Howie

Let X be a finite set and let (X) be the full transformation semigroup on X, i.e. the set of all mappings from X into X, the semigroup operation being composition of mappings. This paper aims to characterize those elements of (X) which have square roots. An easily verifiable necessary condition, that of being quasi-square, is found in Theorem 2, and in Theorems 4 and 5 we find necessary and sufficient conditions for certain special elements of (X). The property of being compatibly amenable is shown in Theorem 7 to be equivalent for all elements of (X) to the possession of a square root.


Sign in / Sign up

Export Citation Format

Share Document