scholarly journals (Hyper)Graph Embedding and Classification via Simplicial Complexes

Algorithms ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 223 ◽  
Author(s):  
Alessio Martino ◽  
Alessandro Giuliani ◽  
Antonello Rizzi

This paper investigates a novel graph embedding procedure based on simplicial complexes. Inherited from algebraic topology, simplicial complexes are collections of increasing-order simplices (e.g., points, lines, triangles, tetrahedrons) which can be interpreted as possibly meaningful substructures (i.e., information granules) on the top of which an embedding space can be built by means of symbolic histograms. In the embedding space, any Euclidean pattern recognition system can be used, possibly equipped with feature selection capabilities in order to select the most informative symbols. The selected symbols can be analysed by field-experts in order to extract further knowledge about the process to be modelled by the learning system, hence the proposed modelling strategy can be considered as a grey-box. The proposed embedding has been tested on thirty benchmark datasets for graph classification and, further, we propose two real-world applications, namely predicting proteins’ enzymatic function and solubility propensity starting from their 3D structure in order to give an example of the knowledge discovery phase which can be carried out starting from the proposed embedding strategy.

2020 ◽  
Vol 34 (04) ◽  
pp. 3389-3396 ◽  
Author(s):  
Heng Chang ◽  
Yu Rong ◽  
Tingyang Xu ◽  
Wenbing Huang ◽  
Honglei Zhang ◽  
...  

With the great success of graph embedding model on both academic and industry area, the robustness of graph embedding against adversarial attack inevitably becomes a central problem in graph learning domain. Regardless of the fruitful progress, most of the current works perform the attack in a white-box fashion: they need to access the model predictions and labels to construct their adversarial loss. However, the inaccessibility of model predictions in real systems makes the white-box attack impractical to real graph learning system. This paper promotes current frameworks in a more general and flexible sense – we demand to attack various kinds of graph embedding model with black-box driven. To this end, we begin by investigating the theoretical connections between graph signal processing and graph embedding models in a principled way and formulate the graph embedding model as a general graph signal process with corresponding graph filter. As such, a generalized adversarial attacker: GF-Attack is constructed by the graph filter and feature matrix. Instead of accessing any knowledge of the target classifiers used in graph embedding, GF-Attack performs the attack only on the graph filter in a black-box attack fashion. To validate the generalization of GF-Attack, we construct the attacker on four popular graph embedding models. Extensive experimental results validate the effectiveness of our attacker on several benchmark datasets. Particularly by using our attack, even small graph perturbations like one-edge flip is able to consistently make a strong attack in performance to different graph embedding models.


2019 ◽  
Vol 8 (4) ◽  
pp. 3570-3574

The facial expression recognition system is playing vital role in many organizations, institutes, shopping malls to know about their stakeholders’ need and mind set. It comes under the broad category of computer vision. Facial expression can easily explain the true intention of a person without any kind of conversation. The main objective of this work is to improve the performance of facial expression recognition in the benchmark datasets like CK+, JAFFE. In order to achieve the needed accuracy metrics, the convolution neural network was constructed to extract the facial expression features automatically and combined with the handcrafted features extracted using Histogram of Gradients (HoG) and Local Binary Pattern (LBP) methods. Linear Support Vector Machine (SVM) is built to predict the emotions using the combined features. The proposed method produces promising results as compared to the recent work in [1].This is mainly needed in the working environment, shopping malls and other public places to effectively understand the likeliness of the stakeholders at that moment.


Algorithms ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 217 ◽  
Author(s):  
Alaa E. Abdel Hakim ◽  
Wael Deabes

In supervised Activities of Daily Living (ADL) recognition systems, annotating collected sensor readings is an essential, yet exhaustive, task. Readings are collected from activity-monitoring sensors in a 24/7 manner. The size of the produced dataset is so huge that it is almost impossible for a human annotator to give a certain label to every single instance in the dataset. This results in annotation gaps in the input data to the adopting learning system. The performance of the recognition system is negatively affected by these gaps. In this work, we propose and investigate three different paradigms to handle these gaps. In the first paradigm, the gaps are taken out by dropping all unlabeled readings. A single “Unknown” or “Do-Nothing” label is given to the unlabeled readings within the operation of the second paradigm. The last paradigm handles these gaps by giving every set of them a unique label identifying the encapsulating certain labels. Also, we propose a semantic preprocessing method of annotation gaps by constructing a hybrid combination of some of these paradigms for further performance improvement. The performance of the proposed three paradigms and their hybrid combination is evaluated using an ADL benchmark dataset containing more than 2.5 × 10 6 sensor readings that had been collected over more than nine months. The evaluation results emphasize the performance contrast under the operation of each paradigm and support a specific gap handling approach for better performance.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Marcin Luckner

Machine learning techniques are a standard approach in spam detection. Their quality depends on the quality of the learning set, and when the set is out of date, the quality of classification falls rapidly. The most popular public web spam dataset that can be used to train a spam detector—WEBSPAM-UK2007—is over ten years old. Therefore, there is a place for a lifelong machine learning system that can replace the detectors based on a static learning set. In this paper, we propose a novel web spam recognition system. The system automatically rebuilds the learning set to avoid classification based on outdated data. Using a built-in automatic selection of the active classifier the system very quickly attains productive accuracy despite a limited learning set. Moreover, the system automatically rebuilds the learning set using external data from spam traps and popular web services. A test on real data from Quora, Reddit, and Stack Overflow proved the high recognition quality. Both the obtained average accuracy and the F-measure were 0.98 and 0.96 for semiautomatic and full–automatic mode, respectively.


1991 ◽  
Vol 01 (04) ◽  
pp. 445-471 ◽  
Author(s):  
CHRYSTOPHER LEV NEHANIV

Let [Formula: see text] be a type of algebra in the sense of universal algebra. By defining singular simplices in algebras and emulating singular [co] homology, we introduce for each variety, pseudo-variety, and divisional class V of type [Formula: see text], a homology and cohomology theory which measure the V-connectivity of type-[Formula: see text] algebras. Intuitively, if we were to think of an algebra as a space and subalgebras which lie in V as simplices, then V-connectivity describes the failure of subalgebras to lie in V, i.e., it describes the "holes" in this space. These [co]homologies are functorial on the class of type-[Formula: see text] algebras and are characterized by a natural topological interpretation. All these notions extend to subsets of algebras. One obtains for this algebraic connectivity, the long exact sequences, relative [co]homologies, and the analogues of the usual [co]homological notions of the algebraic topologists. In fact, we show that the [co]homologies are actually the same as the simplicial [co]homology of simplicial complexes that depend functorially on the algebras. Thus the connectivities in question have a natural geometric meaning. This allows the wholesale import into algebra of the concepts, results, and techniques of algebraic topology. In particular, functoriality implies that the [co]homology of a pair of algebras A ⊆ B is an invariant of the position of A in B. When one V contains another, we obtain relationships between the [co] homology theories in the form of long exact sequences. Furthermore for finite algebras, V-[co]homology is effectively computable if membership in V is. We obtain an analogue of the Poincaré lemma (stating that subsets of an algebra in V are V-homologically trivial), extremely general guarantees of the existence of subsets with non-trivial V-homology for algebras not in V, long exact V-homotopy sequences, as well as analogues of the powerful Eilenberg-Zilber theorems and Kunneth theorems in the setting of V-connectivity for V a variety or pseudo-variety. Also in the more general case of any divisionally closed V, we construct the long exact Mayer-Vietoris sequences for V-homology. Results for homomorphisms include an algebraic version of contiguity for homomorphisms (which implies they are V-homotopic) and a proof that V-surmorphisms are V-homotopy equivalences. If we allow the divisional classes to vary, then algebraic connectivity may be viewed as a functor from the category of pairs W ⊆ V of divisional classes of [Formula: see text]-algebras with inclusions as morphisms' to the category of functors from pairs of [Formula: see text]-algebras to pairs of simplicial complexes. Examples show the non-triviality of this theory (e.g. "associativity tori"), and two preliminary applications to semigroups are given: 1) a proof that the group connectivity of a torsion semigroup S is homotopy equivalent to a space whose points are the maximal subgroups of S, and 2) an aperiodic connectivity analogue of the fundamental lemma of complexity.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 313 ◽  
Author(s):  
Pengbo Gao ◽  
Yan Zhang ◽  
Linhuan Zhang ◽  
Ryozo Noguchi ◽  
Tofael Ahamed

Unmanned aerial vehicle (UAV)-based spraying systems have recently become important for the precision application of pesticides, using machine learning approaches. Therefore, the objective of this research was to develop a machine learning system that has the advantages of high computational speed and good accuracy for recognizing spray and non-spray areas for UAV-based sprayers. A machine learning system was developed by using the mutual subspace method (MSM) for images collected from a UAV. Two target lands: agricultural croplands and orchard areas, were considered in building two classifiers for distinguishing spray and non-spray areas. The field experiments were conducted in target areas to train and test the system by using a commercial UAV (DJI Phantom 3 Pro) with an onboard 4K camera. The images were collected from low (5 m) and high (15 m) altitudes for croplands and orchards, respectively. The recognition system was divided into offline and online systems. In the offline recognition system, 74.4% accuracy was obtained for the classifiers in recognizing spray and non-spray areas for croplands. In the case of orchards, the average classifier recognition accuracy of spray and non-spray areas was 77%. On the other hand, the online recognition system performance had an average accuracy of 65.1% for croplands, and 75.1% for orchards. The computational time for the online recognition system was minimal, with an average of 0.0031 s for classifier recognition. The developed machine learning system had an average recognition accuracy of 70%, which can be implemented in an autonomous UAV spray system for recognizing spray and non-spray areas for real-time applications.


Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1155
Author(s):  
Alessio Martino ◽  
Antonello Rizzi

Graph kernels are one of the mainstream approaches when dealing with measuring similarity between graphs, especially for pattern recognition and machine learning tasks. In turn, graphs gained a lot of attention due to their modeling capabilities for several real-world phenomena ranging from bioinformatics to social network analysis. However, the attention has been recently moved towards hypergraphs, generalization of plain graphs where multi-way relations (other than pairwise relations) can be considered. In this paper, four (hyper)graph kernels are proposed and their efficiency and effectiveness are compared in a twofold fashion. First, by inferring the simplicial complexes on the top of underlying graphs and by performing a comparison among 18 benchmark datasets against state-of-the-art approaches; second, by facing a real-world case study (i.e., metabolic pathways classification) where input data are natively represented by hypergraphs. With this work, we aim at fostering the extension of graph kernels towards hypergraphs and, more in general, bridging the gap between structural pattern recognition and the domain of hypergraphs.


Author(s):  
Na Wang ◽  
Xiaohong Zhang ◽  
Ashutosh Sharma

: The computer assisted speech recognition system enabling voice recognition for understanding the spoken words using sound digitization is extensively being used in the field of education, scientific research, industry, etc. This article unveils the technological perspective of automated speech recognition system in order to realize the spoken English speech recognition system based on MATLAB. A speech recognition technology has been designed and implemented in this work which can collect the speech signals of the spoken English learning system and then filter those speech signals. This paper mainly adopts the preprocessing module for the processing of the raw speech data collected utilizing the MATLAB commands. The method of feature extraction is based on HMM model, codebook generation and template training. The research results show that the recognition accuracy of 98% is achieved by the spoken English speech recognition system studied in this paper. It can be seen that the spoken English speech recognition system based on MATLAB has high recognition accuracy and fast speed. This work addresses the current research issued needed to be tackled in the speech recognition field. This approach is able to provide the technical support and interface for the spoken English learning system.


2020 ◽  
Vol 34 (03) ◽  
pp. 3065-3072 ◽  
Author(s):  
Zhanqiu Zhang ◽  
Jianyu Cai ◽  
Yongdong Zhang ◽  
Jie Wang

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model—namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)—which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.


Sign in / Sign up

Export Citation Format

Share Document