scholarly journals EXISTENCE OF GLOBAL WEAK SOLUTIONS FOR SOME POLYMERIC FLOW MODELS

2005 ◽  
Vol 15 (06) ◽  
pp. 939-983 ◽  
Author(s):  
JOHN W. BARRETT ◽  
CHRISTOPH SCHWAB ◽  
ENDRE SÜLI

We study the existence of global-in-time weak solutions to a coupled microscopic–macroscopic bead-spring model which arises from the kinetic theory of diluted solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ℝd, d = 2, 3, for the velocity and the pressure of the fluid, with an extra-stress tensor as right-hand side in the momentum equation. The extra-stress tensor stems from the random movement of the polymer chains and is defined through the associated probability density function which satisfies a Fokker–Planck type degenerate parabolic equation. Upon appropriate smoothing of the convective velocity field in the Fokker–Planck equation, and in some circumstances, of the extra-stress tensor, we establish the existence of global-in-time weak solutions to this regularised bead-spring model for a general class of spring-force-potentials including in particular the widely used FENE (Finitely Extensible Nonlinear Elastic) model.

2008 ◽  
Vol 18 (06) ◽  
pp. 935-971 ◽  
Author(s):  
JOHN W. BARRETT ◽  
ENDRE SÜLI

We study the existence of global-in-time weak solutions to a coupled microscopic–macroscopic bead-spring model with microscopic cut-off, which arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ℝd, d = 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as the right-hand side in the momentum equation. The extra-stress tensor stems from the random movement of the polymer chains and is defined through the associated probability density function ψ that satisfies a Fokker–Planck-type parabolic equation, a crucial feature of which is the presence of a center-of-mass diffusion term and a cut-off function βL(ψ) = min (ψ,L) in the drag term, where L ≫ 1. We establish the existence of global-in-time weak solutions to the model for a general class of spring-force potentials including, in particular, the widely used finitely extensible nonlinear elastic potential. A key ingredient of the argument is a special testing procedure in the weak formulation of the Fokker–Planck equation, based on the convex entropy function [Formula: see text]. In the case of a corotational drag term, passage to the limit as L → ∞ recovers the Navier–Stokes–Fokker–Planck model with centre-of-mass diffusion, without cut-off.


2016 ◽  
Vol 26 (03) ◽  
pp. 469-568 ◽  
Author(s):  
John W. Barrett ◽  
Endre Süli

We prove the existence of global-in-time weak solutions to a general class of models that arise from the kinetic theory of dilute solutions of nonhomogeneous polymeric liquids, where the polymer molecules are idealized as bead-spring chains with finitely extensible nonlinear elastic (FENE) type spring potentials. The class of models under consideration involves the unsteady, compressible, isentropic, isothermal Navier–Stokes system in a bounded domain [Formula: see text] in [Formula: see text], [Formula: see text] or [Formula: see text], for the density [Formula: see text], the velocity [Formula: see text] and the pressure [Formula: see text] of the fluid, with an equation of state of the form [Formula: see text], where [Formula: see text] is a positive constant and [Formula: see text]. The right-hand side of the Navier–Stokes momentum equation includes an elastic extra-stress tensor, which is the sum of the classical Kramers expression and a quadratic interaction term. The elastic extra-stress tensor stems from the random movement of the polymer chains and is defined through the associated probability density function that satisfies a Fokker–Planck-type parabolic equation, a crucial feature of which is the presence of a center-of-mass diffusion term.


2018 ◽  
Vol 52 (6) ◽  
pp. 2357-2408 ◽  
Author(s):  
Stefan Metzger

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a recent micro-macro bead-spring model for two-phase flow of dilute polymeric solutions derived by methods from nonequilibrium thermodynamics ([Grün, Metzger, M3AS 26 (2016) 823–866]). The model consists of Cahn-Hilliard type equations describing the evolution of the fluids and the unsteady incompressible Navier-Stokes equations in a bounded domain in two or three spatial dimensions for the velocity and the pressure of the fluids with an elastic extra-stress tensor on the right-hand side in the momentum equation which originates from the presence of dissolved polymer chains. The polymers are modeled by dumbbells subjected to a finitely extensible, nonlinear elastic (FENE) spring-force potential. Their density and orientation are described by a Fokker-Planck type parabolic equation with a center-of-mass diffusion term. We perform a rigorous passage to the limit as the spatial and temporal discretization parameters simultaneously tend to zero, and show that a subsequence of these finite element approximations converges towards a weak solution of the coupled Cahn-Hilliard-Navier-Stokes-Fokker-Planck system. To underline the practicality of the presented scheme, we provide simulations of oscillating dilute polymeric droplets and compare their oscillatory behaviour to the one of Newtonian droplets.


2012 ◽  
Vol 22 (05) ◽  
pp. 1150024 ◽  
Author(s):  
JOHN W. BARRETT ◽  
ENDRE SÜLI

We show the existence of global-in-time weak solutions to a general class of coupled Hookean-type bead-spring chain models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain in ℝd, d = 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor appearing on the right-hand side in the momentum equation. The extra-stress tensor stems from the random movement of the polymer chains and is defined by the Kramers expression through the associated probability density function that satisfies a Fokker–Planck-type parabolic equation, a crucial feature of which is the presence of a center-of-mass diffusion term. We require no structural assumptions on the drag term in the Fokker–Planck equation; in particular, the drag term need not be corotational. With a square-integrable and divergence-free initial velocity datum ṵ0 for the Navier–Stokes equation and a non-negative initial probability density function ψ0 for the Fokker–Planck equation, which has finite relative entropy with respect to the Maxwellian M, we prove, via a limiting procedure on certain regularization parameters, the existence of a global-in-time weak solution t ↦ (ṵ(t), ψ(t)) to the coupled Navier–Stokes–Fokker–Planck system, satisfying the initial condition (ṵ(0), ψ(0)) = (ṵ0, ψ0), such that t ↦ ṵ(t) belongs to the classical Leray space and t ↦ ψ(t) has bounded relative entropy with respect to M and t ↦ ψ(t)/M has integrable Fisher information (with respect to the measure [Formula: see text]) over any time interval [0, T], T>0. If the density of body forces [Formula: see text] on the right-hand side of the Navier–Stokes momentum equation vanishes, then a weak solution constructed as above is such that t ↦ (ṵ(t), ψ(t)) decays exponentially in time to [Formula: see text] in the [Formula: see text]-norm, at a rate that is independent of (ṵ0, ψ0) and of the center-of-mass diffusion coefficient. Our arguments rely on new compact embedding theorems in Maxwellian-weighted Sobolev spaces and a new extension of the Kolmogorov–Riesz theorem to Banach-space-valued Sobolev spaces.


2011 ◽  
Vol 21 (06) ◽  
pp. 1211-1289 ◽  
Author(s):  
JOHN W. BARRETT ◽  
ENDRE SÜLI

We show the existence of global-in-time weak solutions to a general class of coupled FENE-type bead-spring chain models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain in ℝd, d = 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor appearing on the right-hand side in the momentum equation. The extra-stress tensor stems from the random movement of the polymer chains and is defined by the Kramers expression through the associated probability density function that satisfies a Fokker–Planck-type parabolic equation, a crucial feature of which is the presence of a centre-of-mass diffusion term. We require no structural assumptions on the drag term in the Fokker–Planck equation; in particular, the drag term needs not be corotational. With a square-integrable and divergence-free initial velocity datum ṵ0 for the Navier–Stokes equation and a non-negative initial probability density function ψ0 for the Fokker–Planck equation, which has finite relative entropy with respect to the Maxwellian M, we prove, via a limiting procedure on certain regularisation parameters, the existence of a global-in-time weak solution t ↦ (ṵ(t), ψ(t)) to the coupled Navier–Stokes–Fokker–Planck system, satisfying the initial condition (ṵ(0), ψ(0)) = (ṵ0, ψ0), such that t ↦ ṵ(t) belongs to the classical Leray space and t ↦ ψ(t) has bounded relative entropy with respect to M and t ↦ ψ(t)/M has integrable Fisher information (w.r.t. the measure [Formula: see text] over any time interval [0, T], T > 0. If the density of body forces [Formula: see text] on the right-hand side of the Navier–Stokes momentum equation vanishes, then a weak solution constructed as above is such that t ↦ (ṵ(t), ψ(t)) decays exponentially in time to [Formula: see text] in the [Formula: see text] norm, at a rate that is independent of (ṵ0, ψ0) and of the centre-of-mass diffusion coefficient.


2001 ◽  
Vol 124 (1) ◽  
pp. 279-280 ◽  
Author(s):  
N. A. Patankar ◽  
P. Y. Huang ◽  
D. D. Joseph ◽  
H. H. Hu

In this note we present a proof showing that the contribution from the extra stress tensor to the normal component of the stress on the surface of a moving rigid body in an incompressible Oldroyd-B fluid is zero.


2011 ◽  
Vol 55 (1) ◽  
pp. 17-42 ◽  
Author(s):  
Miroslav Grmela ◽  
Amine Ammar ◽  
Francisco Chinesta

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Fucai Li ◽  
Yue Li

<p style='text-indent:20px;'>We study a kinetic-fluid model in a <inline-formula><tex-math id="M1">\begin{document}$ 3D $\end{document}</tex-math></inline-formula> bounded domain. More precisely, this model is a coupling of the Vlasov-Fokker-Planck equation with the local alignment force and the compressible Navier-Stokes equations with nonhomogeneous Dirichlet boundary condition. We prove the global existence of weak solutions to it for the isentropic fluid (adiabatic coefficient <inline-formula><tex-math id="M2">\begin{document}$ \gamma&gt; 3/2 $\end{document}</tex-math></inline-formula>) and hence extend the existence result of Choi and Jung [Asymptotic analysis for a Vlasov-Fokker-Planck/Navier-Stokes system in a bounded domain, arXiv: 1912.13134v2], where the velocity of the fluid is supplemented with homogeneous Dirichlet boundary condition.</p>


Sign in / Sign up

Export Citation Format

Share Document