polymeric solutions
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 47)

H-INDEX

24
(FIVE YEARS 3)

Author(s):  
Akinleye O. Sowunmi ◽  
Vincent E. Efeovbokhan ◽  
Oyinkepreye D. Orodu ◽  
Babalola A. Oni

AbstractGum arabic (GA) capacity as an enhanced oil recovery (EOR) agent is studied and compared to the commonly applied xanthan gum (XG). FTIR and TGA characterisation of these two polyelectrolytes and a rheology study by viscosity measurement was conducted on their polymeric and nano-polymeric solution at varying concentrations of the polymers and nanoparticles (NP). Coreflooding experiments were conducted based on a sequence of waterflooding and three slugs of increasing concentration of polymeric (and nano-polymeric) solutions to evaluate EOR performance. Results show similar rheology and oil recovery for 1.0 wt% GA and a 0.1 wt% XG polymeric solution. And the viscosity of GA tends to be Newtonian at a relatively high shear rate. The magnitude of incremental oil recovery of the first slug is independent of the GA concentration but significant for XG. However, the impact of nano-polymeric solution on oil recovery is higher than the polymeric solution. The increase in NP concentration played a vital role in oil recovery, thereby connoting the significance of IFT, contact angle, and its associated mechanisms for EOR. And FTIR affirms that the hydroxyl group in XG is less than GA, thus responsible for adsorption of GA compared to XG.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3655
Author(s):  
Rubén Caro-Briones ◽  
Blanca Estela García-Pérez ◽  
Eduardo San Martín-Martínez ◽  
Héctor Báez-Medina ◽  
Irlanda Grisel Cruz-Reyes ◽  
...  

In this work, the influence of carbon nanotubes (CNTs) content on the mechanical and electrical properties of four series of polymeric matrix were made and their cytotoxicity on cells was evaluated to consider their use as a possible artificial muscle. For that, polymer composite yarns were electrospun using polymeric solutions at 10 wt.%. of poly(styrene-co-acrylonitrile) P(S:AN) and P(S:AN-acrylic acid) P(S:AN-AA) at several monomeric concentrations, namely 0:100, 20:80, 40:60, 50:50 (wt.%:wt.%), and 1 wt.% of AA. Carbon nanotubes (CNTs) were added to the polymeric solutions at two concentrations, 0.5 and 1.0 wt.%. PMCs yarns were collected using a blade collector. Mechanical and electrical properties of polymeric yarns indicated a dependence of CNTs content into yarns. Three areas could be found in fibers: CNTs bundles zones, distributed and aligned CNTs zones, and polymer-only zones. PMCs yarns with 0.5 wt.% CNTs concentration were found with a homogenous nanotube dispersion and axial alignment in polymeric yarn, ensuring load transfer on the polymeric matrix to CNTs, increasing the elastic modulus up to 27 MPa, and a maximum electrical current of 1.8 mA due to a good polymer–nanotube interaction.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 150
Author(s):  
Laura Di Muzio ◽  
Patrizia Paolicelli ◽  
Chiara Brandelli ◽  
Stefania Cesa ◽  
Jordan Trilli ◽  
...  

Recently, we reported the synthesis and characterization of a new dextran derivative obtained by grafting polyethylene glycol methacrylate to a polysaccharide backbone through a carbonate bond. This moiety was introduced because it allows for the fabrication, through a photo-induced crosslinking reaction, of biodegradable hydrogels particularly suitable for the release of high molecular weight molecules. Here, we investigate the influence of the oxyethylene chain length and the molecular weight of the starting dextran on the main properties of the polymeric solutions as well as those of the corresponding hydrogels. All synthesized polymeric derivatives were characterized by FTIR, NMR, and rheological analyses. The photo-crosslinking reaction of the polymers allowed us to obtain biodegradable networks tested for their mechanical properties, swelling, and degradation behavior. The results showed that both the oxyethylene chain length as well as the molecular weight of the starting dextran influenced swelling and degradation of the hydrogel network. As a consequence, the different behaviors in terms of swelling and degradability were able to affect the release of a large model molecule over time, making these matrices suitable candidates for the delivery of high molecular weight drug substances.


Author(s):  
Anuradha P Prajapati ◽  
Jalpa H Kanzaria ◽  
Shailesh V Luhar ◽  
Sachin B Narkhede

The objective of the present work is to formulate, develop and evaluate nasal in situ gel of Pregabalin to provide better therapy for Epilepsy. Pregabalin is BCS class I drug. It is 3rd generation anticonvulsant used in epilepsy in which faster action is required. Nasal route has faster action than oral route, also convenient to unconscious patient. Pregabalin loaded in situ gel, for the treatment of epilepsy to avoid side effects and first pass metabolism associated with conventional treatment and increase bioavailability. Pregabalin was loaded into different polymeric solutions of Polycarbophil and HPMC K4M. The drug was characterized for various parameters like UV-Spectroscopy, FTIR Spectroscopy and DSC study. Excipients were screened for selection of mucoadhesive and gelling polymer. Then the drug was formulated as in situ gel. The experiment was subjected to 32 full factorial design, the concentration of Polycarbophil (X1) and HPMC K4M (X2) were selected as independent variables with % drug release and muco-adhesive strength as dependent variables. The kinetic study was carried out for 30 days. Polycarbophil was selected as mucoadhesive and gelling polymer. The values for X1 and X2 were 0.3922% and 0.5263% relating the % drug release and mucoadhesive strength values were 78.20% CDR at 240 min. and 960 dynes/cm2 respectively for checkpoint batch following zero order and Higuchi kinetic. The formulation was found to be stable for 30 days. The present research will be helpful in order to improve the efficacy and tolerability of the antiepileptic drug therapy. So alternative administration strategy has been investigated which deliver nasally administered medication directly to brain effectively. The intranasal in situ gelling system is a promising novel drug delivery system for an antiepileptic drug Pregabalin which could enhance nasal residence time with increased viscosity and mucoadhesive character and provided better release profile of drug for treating epileptic conditions.  


2021 ◽  
Vol 2 (3) ◽  
pp. 648-660
Author(s):  
Mirella Romanelli Vicente Bertolo ◽  
Rafael Leme ◽  
Virginia da Conceição Amaro Martins ◽  
Ana Maria de Guzzi Plepis ◽  
Stanislau Bogusz Junior

In this study, the effects of an agro-industrial residue with active properties, pomegranate peel extract (PPE), were evaluated on the rheological properties of potential coatings based on chitosan (C) and gelatin (G). For this, rheological properties of the polymeric solutions were investigated in relation to PPE concentration (2 or 4 mg PPE g−1 solution), and to its incorporation order into the system (in C or in CG mixture). All solutions were more viscous than elastic (G″ > G′), and the change in PPE concentration had a greater influence accentuating the viscous character of the samples in which PPE was added to the CG mixture (CGPPE2 and CGPPE4). PPE addition to the CG mixture increased the angular frequency at the moduli crossover, indicating the formation of a more resistant polymeric network. This tendency was also observed in flow results, in which PPE addition decreased the pseudoplastic behavior of the solutions, due to a greater cross-linking between the polymers and the phenolic compounds. In general, all the studied solutions showed viscosities suitable for the proposed application, and it was possible to state the importance of standardizing the addition order of the components during the preparation of a coating.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2098
Author(s):  
Tomas Kalous ◽  
Pavel Holec ◽  
Jakub Erben ◽  
Martin Bilek ◽  
Ondrej Batka ◽  
...  

The electrospinning process that produces fine nanofibrous materials have a major disadvantage in the area of productivity. However, alternating current (AC) electrospinning might help to solve the problem via the modification of high voltage signal. The aforementioned productivity aspect can be observed via a camera system that focuses on the jet creation area and that measures the average lifespan. The paper describes the optimization of polyamide 6 (PA 6) solutions and demonstrates the change in the behavior of the process following the addition of a minor dose of oxoacid. This addition served to convert the previously unspinnable (using AC) solution to a high-quality electrospinning solution. The visual analysis of the AC electrospinning of polymeric solutions using a high-speed camera and a programmable power source was chosen as the method for the evaluation of the quality of the process. The solutions were exposed to high voltage applying two types of AC signal, i.e., the sine wave and the step change. All the recordings presented in the paper contained two sets of data: firstly, camera recordings that showed the visual expression of electrospinning and, secondly, signal recordings that provided information on the data position in the signal function.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1915
Author(s):  
Maryam Fatehifar ◽  
Alistair Revell ◽  
Masoud Jabbari

A two-dimensional CFD model based on volume-of-fluid (VOF) is introduced to examine droplet generation in a cross-junction microfluidic using an open-source software, OpenFOAM together with an interFoam solver. Non-Newtonian power-law droplets in Newtonian liquid is numerically studied and its effect on droplet size and detachment time in three different regimes, i.e., squeezing, dripping and jetting, are investigated. To understand the droplet formation mechanism, the shear-thinning behaviour was enhanced by increasing the polymer concentrations in the dispersed phase. It is observed that by choosing a shear-dependent fluid, droplet size decreases compared to Newtonian fluids while detachment time increases due to higher apparent viscosity. Moreover, the rheological parameters—n and K in the power-law model—impose a considerable effect on the droplet size and detachment time, especially in the dripping and jetting regimes. Those parameters also have the potential to change the formation regime if the capillary number (Ca) is high enough. This work extends the understanding of non-Newtonian droplet formation in microfluidics to control the droplet characteristics in applications involving shear-thinning polymeric solutions.


2021 ◽  
Vol 10 (5) ◽  
pp. e33010514807
Author(s):  
Helton Gomes Alves ◽  
Gregory Vinicius Bezerra de Oliveira ◽  
Flávia Freitas Viana ◽  
Marcos Allyson Felipe Rodrigues ◽  
Afonso Avelino Dantas Neto ◽  
...  

Fluids in terms of rheological behavior can be classified into Newtonians and non-Newtonians. Newtonians are fluids that have unique and absolute viscosities, because the ratio between shear stress and shear rate is constant. In the oil industry, most fluids, such as microemulsions, oil and polymeric solutions, do not exhibit Newtonian behavior. To understand the behavior of chemical fluids, it is necessary to analyze some parameters to interpret their properties and applicability. In this context, the present work aims to obtain and characterize microemulsion systems containing Alkali, Surfactant, and Polymer, and verify their applicability in advanced oil recovery. Thus, we obtained five microemulsion systems consisting of saponified coconut oil (surfactant), Butan-1-ol (co-surfactant), kerosene (oil phase), Na2CO3 (alkali), water and different percentages of the polymer. The systems were characterized by analyzes of particle diameter, surface tension, viscosity and rheological behavior using mathematical models. Droplet sizes showed characteristic values of micellar aggregates. Surface tension presented a slight elevation when the percentage of polymer in the microemulsion increased. Through the rheological study, it was possible to observe that experimental values were better adjusted to the Ostwald-de Waele “power-law” model. As the percentage of polymer in the system increased, we calculated the apparent viscosity of the systems and observed an increasing change in viscosity values, a result of great interest to enhanced oil recovery studies.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Hassan Ramezan Zadeh ◽  
Majid Seifi ◽  
Ebrahim Mousali

Abstract The multifaceted field of conductive inks is moving from a preliminary to an advanced stage. In this study, cellulose filter paper was used as a popular, renewable, and inexpensive material, with very interesting flexible characteristics. The novelty of this work was to use a single-walled carbon nanotube/silver (SWCNT/Ag) nanopowder in a color polymeric matrix for preparing highly conductive color inks resistant to washing. An investigation comparing three inks colored separately with different anionic and cationic dyes was performed to examine possible changes in electrical resistivity of the papers. The results obtained from FT-IR spectroscopy showed the presence of carboxylic groups in acid-treated SWCNTs and revealed Ag-containing bonds. XRD results confirmed functionalization of SWCNTs and obtaining SWCNT/Ag powder with Ag nanoparticles (NPs). Thermal stability and degradation of specimens were studied using TGA analysis to measure the percentage of Ag NPs in the SWCNTs network. The TEM micrographs were consistent with the Scherrer results. Finally, different color inks were synthesized with/without SWCNT/Ag nanopowder, and the four-point probe technique was utilized to measure the electrical resistivity of each colored paper. Consequently, preparation of color conductive inks by using ultra-narrow SWCNTs was done successfully.


Sign in / Sign up

Export Citation Format

Share Document