quadratic interaction
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 12)

H-INDEX

8
(FIVE YEARS 1)

2022 ◽  
Vol 92 (2) ◽  
pp. 225
Author(s):  
Г.А. Павлов

The fluctuation-dissipative theorem and frequency moments for quadratic functions of the reaction of a dense plasma in a constant magnetic field to an electromagnetic field are considered. The frequency moments of the corresponding correlation functions are studied. A model approach is proposed to calculate quadratic reaction functions that determine nonlinear phenomena caused by the quadratic interaction of electromagnetic waves in a dense charged medium (Coulomb systems, plasma) in a constant magnetic field. Keywords: dense plasma, nonlinear fluctuation-dissipative theorem, quadratic reaction functions, nonlinear phenomena.


Author(s):  
Amin Esfahani

In this paper, we study the dynamical behavior of solutions of nonlinear Schrödinger equations with quadratic interaction and [Formula: see text]-critical growth. We give sharp conditions under which the existence of global and blow-up solutions are deduced. We also show the existence, stability, and blow-up behavior of normalized solutions of this system.


Author(s):  
Van Duong Dinh ◽  
Luigi Forcella

AbstractWe establish blow-up results for systems of NLS equations with quadratic interaction in anisotropic spaces. We precisely show finite time blow-up or grow-up for cylindrical symmetric solutions. With our construction, we moreover prove some polynomial lower bounds on the kinetic energy of global solutions in the mass-critical case, which in turn implies grow-up along any diverging time sequence. Our analysis extends to general NLS systems with quadratic interactions, and it also provides improvements of known results in the radial case.


Author(s):  
Bruno V. C. Guimarães ◽  
Sérgio L. R. Donato ◽  
Ignacio Aspiazú ◽  
Alcinei M. Azevedo ◽  
Abner J. de Carvalho

ABSTRACT The understanding of plant behavior and its reflexes on yield is essential for rural planning; thus, the biomathematical models are promising in the yield prediction of cactus pear cv. Gigante. This study aimed to adjust, through simple and multiple regression analysis, models for predicting the yield of cactus pear cv. Gigante. The study, using homogeneous treatments, was developed at the Instituto Federal Baiano, Campus of Guanambi, Bahia, Brazil. Data were collected in an area consisting of 384 basic units (plants), in which the yield, defined as a dependent variable, and the predictor variables: plant height (PH), cladode length (CL), cladode width (CW), and cladode thickness (CT), number of cladodes (NC), cladode area (CA), and total cladode area (TCA) were evaluated. Simple linear regression models, multiple regression models only with simple effects for the explanatory variables, and the multiple regression models considering the simple and quadratic effects, and all its possible interactions were adjusted. From this last model, a reduced model was obtained by discarding the less relevant effects, using the Stepwise methodology. The use of the vegetative traits, TCA, NC, CA, CL, CT, and CW, through the adoption of multiple linear regression, quadratic interaction or just the variable TCA by the use of simple linear regression, allows the yield prediction of cactus pear, with adjusted R² of 0.82, 0.76, and 0.74, respectively.


2020 ◽  
Vol 378 (2) ◽  
pp. 851-889
Author(s):  
Christopher J. Fewster ◽  
Rainer Verch

Abstract The process of quantum measurement is considered in the algebraic framework of quantum field theory on curved spacetimes. Measurements are carried out on one quantum field theory, the “system”, using another, the “probe”. The measurement process involves a dynamical coupling of “system” and “probe” within a bounded spacetime region. The resulting “coupled theory” determines a scattering map on the uncoupled combination of the “system” and “probe” by reference to natural “in” and “out” spacetime regions. No specific interaction is assumed and all constructions are local and covariant. Given any initial state of the probe in the “in” region, the scattering map determines a completely positive map from “probe” observables in the “out” region to “induced system observables”, thus providing a measurement scheme for the latter. It is shown that the induced system observables may be localized in the causal hull of the interaction coupling region and are typically less sharp than the probe observable, but more sharp than the actual measurement on the coupled theory. Post-selected states conditioned on measurement outcomes are obtained using Davies–Lewis instruments that depend on the initial probe state. Composite measurements involving causally ordered coupling regions are also considered. Provided that the scattering map obeys a causal factorization property, the causally ordered composition of the individual instruments coincides with the composite instrument; in particular, the instruments may be combined in either order if the coupling regions are causally disjoint. This is the central consistency property of the proposed framework. The general concepts and results are illustrated by an example in which both “system” and “probe” are quantized linear scalar fields, coupled by a quadratic interaction term with compact spacetime support. System observables induced by simple probe observables are calculated exactly, for sufficiently weak coupling, and compared with first order perturbation theory.


Author(s):  
Г.А. Павлов

Nonlinear phenomena caused by the quadratic interaction of electromagnetic waves in a dense charged medium (Coulomb systems, plasma) are considered: parametric generation and generation of the second harmonic of electromagnetic radiation. To determine the quadratic reaction functions describing the interaction of electromagnetic waves in the medium, an approach based on the use of explicit approximations for reaction functions with fitting parameters is applied. Parameters are found from the exact frequency moments of the reaction functions. Using data on reaction functions, the conditions for the experimental implementation of these phenomena in a laboratory dense plasma in a constant magnetic field were evaluated.


Sign in / Sign up

Export Citation Format

Share Document