scholarly journals A nonconforming Trefftz virtual element method for the Helmholtz problem

2019 ◽  
Vol 29 (09) ◽  
pp. 1619-1656 ◽  
Author(s):  
Lorenzo Mascotto ◽  
Ilaria Perugia ◽  
Alexander Pichler

We introduce a novel virtual element method (VEM) for the two-dimensional Helmholtz problem endowed with impedance boundary conditions. Local approximation spaces consist of Trefftz functions, i.e. functions belonging to the kernel of the Helmholtz operator. The global trial and test spaces are not fully discontinuous, but rather interelement continuity is imposed in a nonconforming fashion. Although their functions are only implicitly defined, as typical of the VEM framework, they contain discontinuous subspaces made of functions known in closed form and with good approximation properties (plane-waves, in our case). We carry out an abstract error analysis of the method, and derive [Formula: see text]-version error estimates. Moreover, we initiate its numerical investigation by presenting a first test, which demonstrates the theoretical convergence rates.

2016 ◽  
Vol 50 (3) ◽  
pp. 783-808 ◽  
Author(s):  
Ilaria Perugia ◽  
Paola Pietra ◽  
Alessandro Russo

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Gianmarco Manzini ◽  
Annamaria Mazzia

<p style='text-indent:20px;'>The Virtual Element Method (VEM) is a Galerkin approximation method that extends the Finite Element Method (FEM) to polytopal meshes. In this paper, we present a conforming formulation that generalizes the Scott-Vogelius finite element method for the numerical approximation of the Stokes problem to polygonal meshes in the framework of the virtual element method. In particular, we consider a straightforward application of the virtual element approximation space for scalar elliptic problems to the vector case and approximate the pressure variable through discontinuous polynomials. We assess the effectiveness of the numerical approximation by investigating the convergence on a manufactured solution problem and a set of representative polygonal meshes. We numerically show that this formulation is convergent with optimal convergence rates except for the lowest-order case on triangular meshes, where the method coincides with the <inline-formula><tex-math id="M1">\begin{document}$ {\mathbb{P}}_{{1}}-{\mathbb{P}}_{{0}} $\end{document}</tex-math></inline-formula> Scott-Vogelius scheme, and on square meshes, which are situations that are well-known to be unstable.</p>


CALCOLO ◽  
2021 ◽  
Vol 58 (3) ◽  
Author(s):  
Elena Bachini ◽  
Gianmarco Manzini ◽  
Mario Putti

AbstractWe develop a geometrically intrinsic formulation of the arbitrary-order Virtual Element Method (VEM) on polygonal cells for the numerical solution of elliptic surface partial differential equations (PDEs). The PDE is first written in covariant form using an appropriate local reference system. The knowledge of the local parametrization allows us to consider the two-dimensional VEM scheme, without any explicit approximation of the surface geometry. The theoretical properties of the classical VEM are extended to our framework by taking into consideration the highly anisotropic character of the final discretization. These properties are extensively tested on triangular and polygonal meshes using a manufactured solution. The limitations of the scheme are verified as functions of the regularity of the surface and its approximation.


2018 ◽  
Vol 77 (3) ◽  
pp. 1874-1908 ◽  
Author(s):  
Lorenzo Mascotto ◽  
Ilaria Perugia ◽  
Alexander Pichler

2021 ◽  
Vol 381 ◽  
pp. 113815
Author(s):  
S. Naranjo Alvarez ◽  
V. Bokil ◽  
V. Gyrya ◽  
G. Manzini

2018 ◽  
Vol 52 (3) ◽  
pp. 965-993 ◽  
Author(s):  
Massimo Frittelli ◽  
Ivonne Sgura

We present and analyze a Virtual Element Method (VEM) for the Laplace-Beltrami equation on a surface in ℝ3, that we call Surface Virtual Element Method (SVEM). The method combines the Surface Finite Element Method (SFEM) (Dziuk, Eliott, G. Dziuk and C.M. Elliott., Acta Numer. 22 (2013) 289–396.) and the recent VEM (Beirão da Veiga et al., Math. Mod. Methods Appl. Sci. 23 (2013) 199–214.) in order to allow for a general polygonal approximation of the surface. We account for the error arising from the geometry approximation and in the case of polynomial order k = 1 we extend to surfaces the error estimates for the interpolation in the virtual element space. We prove existence, uniqueness and first order H1 convergence of the numerical solution.We highlight the differences between SVEM and VEM from the implementation point of view. Moreover, we show that the capability of SVEM of handling nonconforming and discontinuous meshes can be exploited in the case of surface pasting. We provide some numerical experiments to confirm the convergence result and to show an application of mesh pasting.


Sign in / Sign up

Export Citation Format

Share Document