A cookbook for approximating Euclidean balls and for quadrature rules in finite element methods for nonlocal problems

Author(s):  
Marta D’Elia ◽  
Max Gunzburger ◽  
Christian Vollmann

The implementation of finite element methods (FEMs) for nonlocal models with a finite range of interaction poses challenges not faced in the partial differential equations (PDEs) setting. For example, one has to deal with weak forms involving double integrals which lead to discrete systems having higher assembly and solving costs due to possibly much lower sparsity compared to that of FEMs for PDEs. In addition, one may encounter nonsmooth integrands. In many nonlocal models, nonlocal interactions are limited to bounded neighborhoods that are ubiquitously chosen to be Euclidean balls, resulting in the challenge of dealing with intersections of such balls with the finite elements. We focus on developing recipes for the efficient assembly of FEM stiffness matrices and on the choice of quadrature rules for the double integrals that contribute to the assembly efficiency and also posses sufficient accuracy. A major feature of our recipes is the use of approximate balls, e.g. several polygonal approximations of Euclidean balls, that, among other advantages, mitigate the challenge of dealing with ball-element intersections. We provide numerical illustrations of the relative accuracy and efficiency of the several approaches we develop.

2017 ◽  
Vol 17 (3) ◽  
pp. 377-396 ◽  
Author(s):  
Trygve Bærland ◽  
Jeonghun J. Lee ◽  
Kent-Andre Mardal ◽  
Ragnar Winther

AbstractWe discuss the construction of robust preconditioners for finite element approximations of Biot’s consolidation model in poroelasticity. More precisely, we study finite element methods based on generalizations of the Hellinger–Reissner principle of linear elasticity, where the stress tensor is one of the unknowns. The Biot model has a number of applications in science, medicine, and engineering. A challenge in many of these applications is that the model parameters range over several orders of magnitude. Therefore, discretization procedures which are well behaved with respect to such variations are needed. The focus of the present paper will be on the construction of preconditioners, such that the preconditioned discrete systems are well-conditioned with respect to variations of the model parameters as well as refinements of the discretization. As a byproduct, we also obtain preconditioners for linear elasticity that are robust in the incompressible limit.


2009 ◽  
Vol 227 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Saulo P. Oliveira ◽  
Alexandre L. Madureira ◽  
Frederic Valentin

1998 ◽  
Vol 120 (05) ◽  
pp. 63-65 ◽  
Author(s):  
Klaus-Jürgen Bathe

This article focuses on some aspects of the reliability of finite-element methods and their accurate use. In order to illustrate, linear elastic solutions are considered and assumed that the algebraic finite-element equations are solved exactly. The mathematical model is based on assumptions made regarding the geometry, material conditions, loading, and displacement boundary conditions. The analysis problem is obtained by specifying the geometry and dimensions, support conditions, material constants, and loading. As a remedy in displacement-based finite-element methods, reduced integration is employed. This means that in the numerical integration of the element stiffness matrices, the exact matrices are not evaluated. The method is simple to program and requires less computation time to establish the matrices, and with experience acceptable results are frequently obtained. However, the technique can also lead to very large errors. As a conclusion, finite-element methods can now be employed with great confidence, however, only the methods considered reliable should be used.


2013 ◽  
Vol 41 (2) ◽  
pp. 127-151
Author(s):  
Rudolf F. Bauer

ABSTRACT The benefits of a tire's equilibrium profile have been suggested by several authors in the published literature, and mathematical procedures were developed that represented well the behavior of bias ply tires. However, for modern belted radial ply tires, and particularly those with a lower aspect ratio, the tire constructions are much more complicated and pose new problems for a mathematical analysis. Solutions to these problems are presented in this paper, and for a modern radial touring tire the equilibrium profile was calculated together with the mold profile to produce such tires. Some construction modifications were then applied to these tires to render their profiles “nonequilibrium.” Finite element methods were used to analyze for stress concentrations and deformations within all tires that did or did not conform to equilibrium profiles. Finally, tires were built and tested to verify the predictions of these analyses. From the analysis of internal stresses and deformations on inflation and loading and from the actual tire tests, the superior durability of tires with an equilibrium profile was established, and hence it is concluded that an equilibrium profile is a beneficial property of modern belted radial ply tires.


Sign in / Sign up

Export Citation Format

Share Document