ON EXTREME COEFFICIENTS OF THE JONES–KAUFFMAN POLYNOMIAL FOR VIRTUAL LINKS

2006 ◽  
Vol 15 (07) ◽  
pp. 853-868
Author(s):  
ROMAN S. AVDEEV

An important problem of knot theory is to find or estimate the extreme coefficients of the Jones–Kauffman polynomial for (virtual) links with a given number of classical crossings. This problem has been studied by Morton and Bae [1] and Manchón [11] for the case of classical links. It turns out that the general case can be reduced to the case when the extreme coefficient function is expressible in terms of chord diagrams (previous authors consider only d-diagrams which correspond to the classical case [9]). We find the maximal absolute values for generic chord diagrams, thus, for generic virtual knots. Also we consider the "next" coefficient of the Jones–Kauffman polynomial in terms of framed chord diagrams and find its maximal value for a given number of chords. These two functions on chord diagrams are of their own interest because there are related to the Vassiliev invariants of classical knots and J-invariants of planar curves, as mentioned in [10].

2013 ◽  
Vol 22 (12) ◽  
pp. 1341006 ◽  
Author(s):  
VLADIMIR ALEKSANDROVICH KRASNOV ◽  
VASSILY OLEGOVICH MANTUROV

The Kuperberg bracket is a well-known invariant of classical links. Recently, the second named author and Kauffman constructed the graph-valued generalization of the Kuperberg bracket for the case of virtual links: unlike the classical case, the invariant in the virtual case is valued in graphs which carry a significant amount of information about the virtual knot. The crucial difference between virtual knot theory and classical knot theory is the rich topology of the ambient space for virtual knots. In a paper by Chrisman and the second named author, two-component classical links with one fibered component were considered; the complement to the fibered component allows one to get highly non-trivial ambient topology for the other component. In this paper, we combine the ideas of the above mentioned papers and construct the "virtual" Kuperberg bracket for two-component links L = J ⊔ K with one component (J) fibered. We consider a new geometrical complexity for such links and establish minimality of diagrams in a strong sense. Roughly speaking, every other "diagram" of the knot in question contains the initial diagram as a subdiagram. We prove a sufficient condition for minimality in a strong sense where minimality cannot be established as introduced in the paper by Chrisman and the second named author.


2014 ◽  
Vol 23 (12) ◽  
pp. 1450066 ◽  
Author(s):  
Young Ho Im ◽  
Kyoung Il Park ◽  
Mi Hwa Shin

We introduce the odd Jones–Kauffman polynomial and odd Miyazawa polynomials of virtual link diagrams by using the parity of virtual link diagrams given in [Y. H. Im and K. I. Park, A parity and a multi-variable polynomial invariant for virtual links, J. Knot Theory Ramifications22(13) (2013), Article ID: 1350073, 18pp.], which are different from the original Jones–Kauffman and Miyazawa polynomials. Also, we give a family of parities and odd polynomials for virtual knots so that many virtual knots can be distinguished.


2005 ◽  
Vol 14 (02) ◽  
pp. 231-242 ◽  
Author(s):  
VASSILY O. MANTUROV

We discuss the strong invariant of virtual links proposed in [23]. This invariant is obtained as a generalization of the Jones–Kauffman polynomial (generalized Kauffman's bracket) by adding to the sum some equivalence classes of curves in two-dimensional surfaces. Thus, the invariant is valued in the infinite-dimensional free module over Z[q,q-1]. We prove that this invariant can be decomposed into finite type Vassiliev invariant of virtual links (in Kauffman's sense); thus we present new infinite series of Vassiliev invariants. It is also proved that this invariant is strictly stronger than the Jones–Kauffman polynomial for virtual knots proposed by Kauffman. Some examples when the invariant can recognize virtual knots that can not be recognized by other invariants are given.


2004 ◽  
Vol 13 (08) ◽  
pp. 1029-1039 ◽  
Author(s):  
VASSILY O. MANTUROV

There are some phenomena arising in the virtual knot theory which are not the case for classical knots. One of them deals with the "breaking" procedure of knots and obtaining long knots. Unlike the classical case, they might not be the same. The present work is devoted to construction of some invariants of long virtual links. Several explicit examples are given. For instance, we show how to prove the non-triviality of some knots obtained by breaking virtual unknot diagrams by very simple means.


2012 ◽  
Vol 21 (14) ◽  
pp. 1250128
Author(s):  
KYEONGHUI LEE ◽  
YOUNG HO IM

We construct some polynomial invariants for virtual links by the recursive method, which are different from the index polynomial invariant defined in [Y. H. Im, K. Lee and S. Y. Lee, Index polynomial invariant of virtual links, J. Knot Theory Ramifications19(5) (2010) 709–725]. We show that these polynomials can distinguish whether virtual knots can be invertible or not although the index polynomial cannot distinguish the invertibility of virtual knots.


2011 ◽  
Vol 20 (12) ◽  
pp. 1649-1667 ◽  
Author(s):  
YOUNG HO IM ◽  
SERA KIM ◽  
KYEONGHUI LEE

We introduce invariants of flat virtual links which are induced from Vassiliev invariants of degree one for virtual links. Also we give several properties of these invariants for flat virtual links and examples. In particular, if the value of some invariants of flat virtual knots F are non-zero, then F is non-invertible so that every virtual knot overlying F is non-invertible.


2013 ◽  
Vol 22 (12) ◽  
pp. 1341002 ◽  
Author(s):  
ZHIYUN CHENG ◽  
HONGZHU GAO

In this paper, we define some polynomial invariants for virtual knots and links. In the first part we use Manturov's parity axioms [Parity in knot theory, Sb. Math.201 (2010) 693–733] to obtain a new polynomial invariant of virtual knots. This invariant can be regarded as a generalization of the odd writhe polynomial defined by the first author in [A polynomial invariant of virtual knots, preprint (2012), arXiv:math.GT/1202.3850v1]. The relation between this new polynomial invariant and the affine index polynomial [An affine index polynomial invariant of virtual knots, J. Knot Theory Ramification22 (2013) 1340007; A linking number definition of the affine index polynomial and applications, preprint (2012), arXiv:1211.1747v1] is discussed. In the second part we introduce a polynomial invariant for long flat virtual knots. In the third part we define a polynomial invariant for 2-component virtual links. This polynomial invariant can be regarded as a generalization of the linking number.


2016 ◽  
Vol 25 (08) ◽  
pp. 1650045
Author(s):  
Myeong-Ju Jeong ◽  
Dahn-Goon Kim

Habiro showed that two knots [Formula: see text] and [Formula: see text] are related by a finite sequence of clasp-pass moves, if and only if they have the same value for Vassiliev invariants of type [Formula: see text]. Tsukamoto showed that, if two knots differ by a clasp-pass move then the values of the Vassiliev invariant [Formula: see text] of degree [Formula: see text] for the two knots differ by [Formula: see text] or [Formula: see text], where [Formula: see text] is the Jones polynomial of a knot [Formula: see text]. If two virtual knots are related by clasp-pass moves, then they take the same value for all Vassiliev invariants of degree [Formula: see text]. We extend the Tsukamoto’s result to virtual knots by using a Vassiliev invariant [Formula: see text] of degree [Formula: see text], which is induced from the Kauffman polynomial. We also get a lower bound for the minimal number of clasp-pass moves needed to transform [Formula: see text] to [Formula: see text], if two virtual knots [Formula: see text] and [Formula: see text] can be related by a finite sequence of clasp-pass moves.


Author(s):  
Jeremie Bouttier

This article considers some enumeration problems in knot theory, with a focus on the application of matrix integral techniques. It first reviews the basic definitions of knot theory, paying special attention to links and tangles, especially 2-tangles, before discussing virtual knots and coloured links as well as the bare matrix model that describes coloured link diagrams. It shows how the large size limit of matrix integrals with quartic potential may be used to count alternating links and tangles. The removal of redundancies amounts to renormalization of the potential. This extends into two directions: first, higher genus and the counting of ‘virtual’ links and tangles, and second, the counting of ‘coloured’ alternating links and tangles. The article analyses the asymptotic behaviour of the number of tangles as the number of crossings goes to infinity


2013 ◽  
Vol 22 (13) ◽  
pp. 1350073 ◽  
Author(s):  
YOUNG HO IM ◽  
KYOUNG IL PARK

We introduce a parity of classical crossings of virtual link diagrams which extends the Gaussian parity of virtual knot diagrams and the odd writhe of virtual links that extends that of virtual knots introduced by Kauffman [A self-linking invariants of virtual knots, Fund. Math.184 (2004) 135–158]. Also, we introduce a multi-variable polynomial invariant for virtual links by using the parity of classical crossings, which refines the index polynomial introduced in [Index polynomial invariants of virtual links, J. Knot Theory Ramifications19(5) (2010) 709–725]. As consequences, we give some properties of our invariant, and raise some examples.


Sign in / Sign up

Export Citation Format

Share Document