scholarly journals POLYGONAL KNOT SPACE NEAR ROPELENGTH-MINIMIZED KNOTS

2008 ◽  
Vol 17 (05) ◽  
pp. 601-631 ◽  
Author(s):  
KENNETH C. MILLETT ◽  
MICHAEL PIATEK ◽  
ERIC J. RAWDON

For a polygonal knot K, it is shown that a tube of radius R(K), the polygonal thickness radius, is an embedded torus. Given a thick configuration K, perturbations of size r < R(K) define satellite structures, or local knotting. We explore knotting within these tubes both theoretically and numerically. We provide bounds on perturbation radii for which one can obtain small trefoil and figure-eight summands and use Monte Carlo simulations to estimate the relative probabilities of these structures as a function of the number of edges.

Author(s):  
Matthew T. Johnson ◽  
Ian M. Anderson ◽  
Jim Bentley ◽  
C. Barry Carter

Energy-dispersive X-ray spectrometry (EDS) performed at low (≤ 5 kV) accelerating voltages in the SEM has the potential for providing quantitative microanalytical information with a spatial resolution of ∼100 nm. In the present work, EDS analyses were performed on magnesium ferrite spinel [(MgxFe1−x)Fe2O4] dendrites embedded in a MgO matrix, as shown in Fig. 1. spatial resolution of X-ray microanalysis at conventional accelerating voltages is insufficient for the quantitative analysis of these dendrites, which have widths of the order of a few hundred nanometers, without deconvolution of contributions from the MgO matrix. However, Monte Carlo simulations indicate that the interaction volume for MgFe2O4 is ∼150 nm at 3 kV accelerating voltage and therefore sufficient to analyze the dendrites without matrix contributions.Single-crystal {001}-oriented MgO was reacted with hematite (Fe2O3) powder for 6 h at 1450°C in air and furnace cooled. The specimen was then cleaved to expose a clean cross-section suitable for microanalysis.


1979 ◽  
Vol 40 (C7) ◽  
pp. C7-63-C7-64
Author(s):  
A. J. Davies ◽  
J. Dutton ◽  
C. J. Evans ◽  
A. Goodings ◽  
P.K. Stewart

Sign in / Sign up

Export Citation Format

Share Document