FINITE LINEAR QUOTIENTS OF ${\mathcal{B}}_3$ OF LOW DIMENSION

2010 ◽  
Vol 19 (05) ◽  
pp. 587-600 ◽  
Author(s):  
ERIC C. ROWELL ◽  
IMRE TUBA

We study the problem of deciding whether or not the image of an irreducible representation of the braid group [Formula: see text] of degree ≤ 5 has finite image if we are only given the eigenvalues of a generator. We provide a partial algorithm that determines when the images are finite or infinite in all but finitely many cases, and use these results to study examples coming from quantum groups. Our technique uses two classification theorems and the computational group theory package GAP.

1993 ◽  
Vol 05 (03) ◽  
pp. 533-549 ◽  
Author(s):  
M. D. GOULD ◽  
I. TSOHANTJIS ◽  
A. J. BRACKEN

A general method for constructing invariants for quantum supergroups is applied to obtain a closed formula for link polynomials. For type I quantum supergroups, a realization of the braid group and corresponding link polynomial is determined, for each irreducible representation of the quantum supergroup in a certain class. Although these realizations are not matrix representations in the usual sense, nevertheless link polynomials are defined which are generalizations of those previously obtained from quantum groups. To illustrate the theory, link polynomials corresponding to the defining representations of the quantum supergroups Uq [gl(m|n)], Uq [C (m + 1)] are determined explicitly.


2020 ◽  
Vol 2020 (769) ◽  
pp. 87-119
Author(s):  
Sabin Cautis ◽  
Aaron D. Lauda ◽  
Joshua Sussan

AbstractRickard complexes in the context of categorified quantum groups can be used to construct braid group actions. We define and study certain natural deformations of these complexes which we call curved Rickard complexes. One application is to obtain deformations of link homologies which generalize those of Batson–Seed [3] [J. Batson and C. Seed, A link-splitting spectral sequence in Khovanov homology, Duke Math. J. 164 2015, 5, 801–841] and Gorsky–Hogancamp [E. Gorsky and M. Hogancamp, Hilbert schemes and y-ification of Khovanov–Rozansky homology, preprint 2017] to arbitrary representations/partitions. Another is to relate the deformed homology defined algebro-geometrically in [S. Cautis and J. Kamnitzer, Knot homology via derived categories of coherent sheaves IV, colored links, Quantum Topol. 8 2017, 2, 381–411] to categorified quantum groups (this was the original motivation for this paper).


2018 ◽  
Vol 27 (06) ◽  
pp. 1850043 ◽  
Author(s):  
Paul P. Gustafson

We show that any twisted Dijkgraaf–Witten representation of a mapping class group of an orientable, compact surface with boundary has finite image. This generalizes work of Etingof et al. showing that the braid group images are finite [P. Etingof, E. C. Rowell and S. Witherspoon, Braid group representations from twisted quantum doubles of finite groups, Pacific J. Math. 234 (2008)(1) 33–42]. In particular, our result answers their question regarding finiteness of images of arbitrary mapping class group representations in the affirmative. Our approach is to translate the problem into manipulation of colored graphs embedded in the given surface. To do this translation, we use the fact that any twisted Dijkgraaf–Witten representation associated to a finite group [Formula: see text] and 3-cocycle [Formula: see text] is isomorphic to a Turaev–Viro–Barrett–Westbury (TVBW) representation associated to the spherical fusion category [Formula: see text] of twisted [Formula: see text]-graded vector spaces. The representation space for this TVBW representation is canonically isomorphic to a vector space of [Formula: see text]-colored graphs embedded in the surface [A. Kirillov, String-net model of Turaev-Viro invariants, Preprint (2011), arXiv:1106.6033 ]. By analyzing the action of the Birman generators [J. Birman, Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math. 22 (1969) 213–242] on a finite spanning set of colored graphs, we find that the mapping class group acts by permutations on a slightly larger finite spanning set. This implies that the representation has finite image.


1996 ◽  
Vol 11 (11) ◽  
pp. 899-913 ◽  
Author(s):  
N. FLEURY ◽  
M. RAUSCH DE TRAUBENBERG

A group theory justification of one-dimensional fractional supersymmetry is proposed using an analog of a coset space, just like the one introduced in 1-D supersymmetry. This theory is then gauged to obtain a local fractional supersymmetry, i.e. a fractional supergravity which is then quantized à la Dirac to obtain an equation of motion for a particle which is in a representation of the braid group and should describe alternative statistics. A formulation invariant under general reparametrization is given by means of a curved fractional superline.


2011 ◽  
pp. 2113-2161
Author(s):  
Bettina Eick ◽  
Gerhard Hiß ◽  
Derek Holt ◽  
Eamonn O’Brien

2016 ◽  
Vol 15 (10) ◽  
pp. 1650179 ◽  
Author(s):  
Yongjun Xu ◽  
Dingguo Wang ◽  
Jialei Chen

We focus on a class of filtered quantum algebras [Formula: see text] which are both coideal subalgebras of quantum groups and Poincaré–Birkhoff–Witt (PBW)-deformations of their negative parts. In [Y. Xu and S. Yang, PBW-deformations of quantum groups, J. Algebra 408 (2014) 222–249], Xu and Yang proved that braid group actions on [Formula: see text] introduced by Kolb and Pellegrini can be used to define root vectors and construct PBW bases for [Formula: see text]. In this present paper, for each element [Formula: see text] in the Weyl group of [Formula: see text] we first introduce a subspace [Formula: see text] and a subalgebra [Formula: see text] of [Formula: see text], where [Formula: see text] can be considered as an analogue of quantum Schubert cell algebra. Then a sufficient and necessary condition on [Formula: see text] is given for [Formula: see text]. Moreover, we prove that [Formula: see text] if and only if [Formula: see text] and [Formula: see text] can be generated by the same simple reflections. Finally, we characterize the algebra [Formula: see text] which can be obtained via an iterated Ore extension. Our results show that quantum groups and their PBW-deformations really have some different properties.


2010 ◽  
Vol 10 (4) ◽  
pp. 835-855 ◽  
Author(s):  
Jong-Shenq Guo ◽  
Hiroshi Matano ◽  
Chin-Chin Wu

Sign in / Sign up

Export Citation Format

Share Document