AN INFINITE FAMILY OF KNOTS WHOSE MOSAIC NUMBER IS REALIZED IN NON-REDUCED PROJECTIONS

2013 ◽  
Vol 22 (07) ◽  
pp. 1350036 ◽  
Author(s):  
LEWIS D. LUDWIG ◽  
ERICA L. EVANS ◽  
JOSEPH S. PAAT

Lomonaco and Kauffman [Quantum knots and mosaics, Quantum Inf. Process. 7(2–3) (2008) 85–115] introduced the notion of knot mosaics in their work on quantum knots. It is conjectured that knot mosaic type is a complete invariant of tame knots. In this paper, we answer a question of C. Adams by constructing an infinite family of knots whose mosaic number can be realized only when the crossing number is not. That is, there is an infinite family of non-minimal knots whose mosaic numbers are known.

Author(s):  
Hamid Abchir ◽  
Mohammed Sabak

We construct an infinite family of links which are both almost alternating and quasi-alternating from a given either almost alternating diagram representing a quasi-alternating link, or connected and reduced alternating tangle diagram. To do that we use what we call a dealternator extension which consists in replacing the dealternator by a rational tangle extending it. We note that all non-alternating and quasi-alternating Montesinos links can be obtained in that way. We check that all the obtained quasi-alternating links satisfy Conjecture 3.1 of Qazaqzeh et al. (JKTR 22 (6), 2013), that is the crossing number of a quasi-alternating link is less than or equal to its determinant. We also prove that the converse of Theorem 3.3 of Qazaqzeh et al. (JKTR 24 (1), 2015) is false.


2019 ◽  
Vol 28 (02) ◽  
pp. 1950002 ◽  
Author(s):  
Daishiro Nishida

Traditionally, knot theorists have considered projections of knots where there are two strands meeting at every crossing. A triple crossing is a crossing where three strands meet at a single point, such that each strand bisects the crossing. In this paper we find a relationship between the triple crossing number and the double crossing braid index for unoriented links, namely [Formula: see text]. This yields a new method for determining braid indices. We find an infinite family of knots that achieve equality, which allows us to determine both the double crossing braid index and the triple crossing number of these knots.


2011 ◽  
Vol 15 (1) ◽  
pp. 150
Author(s):  
Benny Pinontoan

KONSTRUKSI FAMILI GRAF HAMPIR PLANAR DENGAN ANGKA PERPOTONGAN TERTENTU Benny Pinontoan1) 1) Program Studi Matematika FMIPA Universitas Sam Ratulangi Manado, 95115ABSTRAK Sebuah graf adalah pasangan himpunan tak kosong simpul dan himpunan sisi. Graf dapat digambar pada bidang dengan atau tanpa perpotongan. Angka perpotongan adalah jumlah perpotongan terkecil di antara semua gambar graf pada bidang. Graf dengan angka perpotongan nol disebut planar. Graf memiliki penerapan penting pada desain Very Large Scale of Integration (VLSI). Sebuah graf dinamakan perpotongan kritis jika penghapusan sebuah sisi manapun menurunkan angka perpotongannya, sedangkan sebuah graf dinamakan hampir planar jika menghapus salah satu sisinya membuat graf yang sisa menjadi planar. Banyak famili graf perpotongan kritis yang dapat dibentuk dari bagian-bagian kecil yang disebut ubin yang diperkenalkan oleh Pinontoan dan Richter (2003). Pada tahun 2010, Bokal memperkenalkan operasi perkalian zip untuk graf. Dalam artikel ini ditunjukkan sebuah konstruksi dengan menggunakan ubin dan perkalian zip yang jika diberikan bilangan bulat k ³ 1, dapat menghasilkan famili tak hingga graf hampir planar dengan angka perpotongan k. Kata kunci: angka perpotongan, ubin graf, graf hampir planar. CONSTRUCTION OF INFINITE FAMILIES OF ALMOST PLANAR GRAPH WITH GIVEN CROSSING NUMBER ABSTRACT A graph is a pair of a non-empty set of vertices and a set of edges. Graphs can be drawn on the plane with or without crossing of its edges. Crossing number of a graph is the minimal number of crossings among all drawings of the graph on the plane. Graphs with crossing number zero are called planar. Crossing number problems find important applications in the design of layout of Very Large Scale of Integration (VLSI). A graph is crossing-critical if deleting of any of its edge decreases its crossing number. A graph is called almost planar if deleting one edge makes the graph planar. Many infinite sequences of crossing-critical graphs can be made up by gluing small pieces, called tiles introduced by Pinontoan and Richter (2003). In 2010, Bokal introduced the operation zip product of graphs. This paper shows a construction by using tiles and zip product, given an integer k ³ 1, to build an infinite family of almost planar graphs having crossing number k. Keywords: Crossing number, tile, almost planar graph.


2013 ◽  
Vol 13 (1) ◽  
pp. 62
Author(s):  
Juwita Rawung ◽  
Benny Pinontoan ◽  
Winsy Weku

K-CROSSING CRITICAL ALMOST PLANAR GRAPHS ABSTRACT A graph is a pair of a non-empty set of vertices and a set of edges. Graphs can be drawn on the plane with or without crossing of its edges. Crossing number of a graph is the minimal number of crossing among all drawings of the graph on the plane. Graphs with crossing number zero are called planar. A graph is crossing critical if deleting any of its edge decreases its crossing number. A graph is called almost planar if deleting one edge makes the graph planar. This research shows graphs, given an integer k ≥ 1, to build an infinite family of crossing critical almost planar graphs having crossing number k. Keywords: Almost planar graph,crossing critical graph.   GRAF K-PERPOTONGAN KRITIS HAMPIR PLANAR ABSTRAK Sebuah graf adalah pasangan himpunan tak kosong simpul dan himpunan sisi.  Graf dapat digambar pada bidang dengan atau tanpa perpotongan.  Angka perpotongan adalah jumlah perpotongan terkecil di antara semua gambar graf pada bidang.  Graf dengan angka perpotongan nol disebut planar.  Sebuah graf dinamakan perpotongan kritis jika penghapusan sebuah sisi manapun menurunkan angka perpotongannya, sedangkan sebuah graf dinamakan hampir planar jika menghapus salah satu sisinya membuat graf yang sisa menjadi planar.  Dalam penelitian ini ditunjukkan graf, yang jika diberikan bilangan bulatk≥1, dapat menghasilkan famili takhingga graf perpotongan kritis hampir planar dengan angka perpotongan k. Kata kunci: Graf hampir planar, graf perpotongan kritis.


10.37236/1748 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Nagi H. Nahas

The best lower bound known on the crossing number of the complete bipartite graph is : $$cr(K_{m,n}) \geq (1/5)(m)(m-1)\lfloor n/2 \rfloor \lfloor(n-1)/2\rfloor$$ In this paper we prove that: $$cr(K_{m,n}) \geq (1/5)m(m-1)\lfloor n/2 \rfloor \lfloor (n-1)/2 \rfloor + 9.9 \times 10^{-6} m^2n^2$$ for sufficiently large $m$ and $n$.


2020 ◽  
Vol 9 (8) ◽  
pp. 5901-5908
Author(s):  
M. Sagaya Nathan ◽  
J. Ravi Sankar
Keyword(s):  

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 925
Author(s):  
Michal Staš

The crossing number cr ( G ) of a graph G is the minimum number of edge crossings over all drawings of G in the plane. The main goal of the paper is to state the crossing number of the join product K 2 , 3 + C n for the complete bipartite graph K 2 , 3 , where C n is the cycle on n vertices. In the proofs, the idea of a minimum number of crossings between two distinct configurations in the various forms of arithmetic means will be extended. Finally, adding one more edge to the graph K 2 , 3 , we also offer the crossing number of the join product of one other graph with the cycle C n .


Author(s):  
János Barát ◽  
Géza Tóth

AbstractThe crossing number of a graph G is the minimum number of edge crossings over all drawings of G in the plane. A graph G is k-crossing-critical if its crossing number is at least k, but if we remove any edge of G, its crossing number drops below k. There are examples of k-crossing-critical graphs that do not have drawings with exactly k crossings. Richter and Thomassen proved in 1993 that if G is k-crossing-critical, then its crossing number is at most $$2.5\, k+16$$ 2.5 k + 16 . We improve this bound to $$2k+8\sqrt{k}+47$$ 2 k + 8 k + 47 .


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Connor Behan ◽  
Pietro Ferrero ◽  
Xinan Zhou

Abstract Recently four-point holographic correlators with arbitrary external BPS operators were constructively derived in [1, 2] at tree-level for maximally superconformal theories. In this paper, we capitalize on these theoretical data, and perform a detailed study of their analytic properties. We point out that these maximally supersymmetric holographic correlators exhibit a hidden dimensional reduction structure à la Parisi and Sourlas. This emergent structure allows the correlators to be compactly expressed in terms of only scalar exchange diagrams in a dimensionally reduced spacetime, where formally both the AdS and the sphere factors have four dimensions less. We also demonstrate the superconformal properties of holographic correlators under the chiral algebra and topological twistings. For AdS5× S5 and AdS7× S4, we obtain closed form expressions for the meromorphic twisted correlators from the maximally R-symmetry violating limit of the holographic correlators. The results are compared with independent field theory computations in 4d $$ \mathcal{N} $$ N = 4 SYM and the 6d (2, 0) theory, finding perfect agreement. For AdS4× S7, we focus on an infinite family of near-extremal four-point correlators, and extract various protected OPE coefficients from supergravity. These OPE coefficients provide new holographic predictions to be matched by future supersymmetric localization calculations. In deriving these results, we also develop many technical tools which should have broader applicability beyond studying holographic correlators.


Sign in / Sign up

Export Citation Format

Share Document