2- AND 3-VARIATIONS AND FINITE TYPE INVARIANTS OF DEGREE 2 AND 3

2013 ◽  
Vol 22 (08) ◽  
pp. 1350042 ◽  
Author(s):  
MIGIWA SAKURAI

Goussarov, Polyak and Viro defined a finite type invariant and a local move called an n-variation for virtual knots. In this paper, we give the differences of the values of the finite type invariants of degree 2 and 3 between two virtual knots which can be transformed into each other by a 2- and 3-variation, respectively. As a result, we obtain lower bounds of the distance between long virtual knots by 2-variations and the distance between virtual knots by 3-variations by using the values of the finite type invariants of degree 2 and 3, respectively.

2013 ◽  
Vol 22 (06) ◽  
pp. 1350024 ◽  
Author(s):  
MYEONG-JU JEONG

Nelson and Kanenobu showed that forbidden moves unknot any virtual knot. Similarly a long virtual knot can be unknotted by a finite sequence of forbidden moves. Goussarov, Polyak and Viro introduced finite type invariants of virtual knots and long virtual knots and gave combinatorial representations of finite type invariants. We introduce Fn-moves which generalize the forbidden moves. Assume that two long virtual knots K and K′ are related by a finite sequence of Fn-moves. We show that the values of the finite type invariants of degree 2 of K and K′ are congruent modulo n and give a lower bound for the number of Fn-moves needed to transform K to K′.


Topology ◽  
2000 ◽  
Vol 39 (5) ◽  
pp. 1045-1068 ◽  
Author(s):  
Mikhail Goussarov ◽  
Michael Polyak ◽  
Oleg Viro

2012 ◽  
Vol 21 (13) ◽  
pp. 1240001 ◽  
Author(s):  
MICAH WHITNEY CHRISMAN ◽  
VASSILY OLEGOVICH MANTUROV

The present paper produces examples of Gauss diagram formulae for virtual knot invariants which have no analogue in the classical knot case. These combinatorial formulae contain additional information about how a subdiagram is embedded in a virtual knot diagram. The additional information comes from the second author's recently discovered notion of parity. For a parity of flat virtual knots, the new combinatorial formulae are Kauffman finite-type invariants. However, many of the combinatorial formulae possess exotic properties. It is shown that there exists an integer-valued virtualization invariant combinatorial formula of order n for every n (i.e. it is stable under the map which changes the direction of one arrow but preserves the sign). Hence, it is not of Goussarov–Polyak–Viro finite-type. Moreover, every homogeneous Polyak–Viro combinatorial formula admits a decomposition into an "even" part and an "odd" part. For the Gaussian parity, neither part of the formula is of GPV finite-type when it is non-constant on the set of classical knots. In addition, eleven new non-trivial combinatorial formulae of order 2 are presented which are not of GPV finite-type.


2004 ◽  
Vol 13 (01) ◽  
pp. 1-11
Author(s):  
MASAHIDE IWAKIRI

S. Kamada introduced finite type invariants of knotted surfaces in 4-space associated with finger moves and 1-handle surgeries. In this paper, we define finite type invariants of surface braids associated with simple 1-handle surgeries and prove that a certain set of finite type invariants controls all finite type invariants. As a consequence, we see that every finite type invariant is not a complete invariant.


2019 ◽  
Vol 28 (10) ◽  
pp. 1950064 ◽  
Author(s):  
Nicolas Petit

We generalize three invariants, first discovered by Henrich, to the long and/or framed virtual knot case. These invariants are all finite-type invariants of order one, and include a universal invariant. The generalization will require us to extend the notion of a based matrix of a virtual string, first introduced by Turaev and later generalized by Henrich, to the long and framed cases.


2006 ◽  
Vol 15 (09) ◽  
pp. 1163-1199 ◽  
Author(s):  
TADAYUKI WATANABE

Habiro found in his thesis a topological interpretation of finite type invariants of knots in terms of local moves called Habiro's Ck-moves. Ck-moves are defined by using his claspers. In this paper we define "oriented" claspers and RCk-moves among ribbon 2-knots as modifications of Habiro's notions to give a similar interpretation of Habiro–Kanenobu–Shima's finite type invariants of ribbon 2-knots. It works also for ribbon 1-knots. Furthermore, by using oriented claspers for ribbon 1-knots, we can prove Habiro–Shima's conjecture in the case of ℚ-valued invariants, saying that ℚ-valued Habiro–Kanenobu–Shima finite type invariant and ℚ-valued Vassiliev–Goussarov finite type invariant are the same thing.


2007 ◽  
Vol 142 (3) ◽  
pp. 459-468 ◽  
Author(s):  
KAZUO HABIRO

AbstractGoussarov and the author independently proved that two knots in S3 have the same values of finite type invariants of degree <n if and only if they are Cn-equivalent, which means that they are equivalent up to modification by a kind of geometric commutator of class n. This property does not generalize to links with more than one component.In this paper, we study the case of Brunnian links, which are links whose proper sublinks are trivial. We prove that if n ≥ 1, then an (n+1)-component Brunnian link L is Cn-equivalent to an unlink. We also prove that if n ≥ 2, then L can not be distinguished from an unlink by any Goussarov–Vassiliev finite type invariant of degree <2n.


2008 ◽  
Vol 19 (06) ◽  
pp. 747-766 ◽  
Author(s):  
KAZUO HABIRO ◽  
JEAN-BAPTISTE MEILHAN

A link L in the 3-sphere is called Brunnian if every proper sublink of L is trivial. In a previous paper, Habiro proved that the restriction to Brunnian links of any Goussarov–Vassiliev finite type invariant of (n + 1)-component links of degree < 2n is trivial. The purpose of this paper is to study the first nontrivial case. We show that the restriction of an invariant of degree 2n to (n + 1)-component Brunnian links can be expressed as a quadratic form on the Milnor link-homotopy invariants of length n + 1.


2000 ◽  
Vol 09 (06) ◽  
pp. 735-758 ◽  
Author(s):  
BLAKE MELLOR

We define a notion of finite type invariants for links with a fixed linking matrix. We show that Milnor's link homotopy invariant [Formula: see text] is a finite type invariant, of type 1, in this sense. We also generalize this approach to Milnor's higher order [Formula: see text] invariants and show that they are also, in a sense, of finite type. Finally, we compare our approach to another approach for defining finite type invariants within linking classes.


Sign in / Sign up

Export Citation Format

Share Document