scholarly journals PARITY AND EXOTIC COMBINATORIAL FORMULAE FOR FINITE-TYPE INVARIANTS OF VIRTUAL KNOTS

2012 ◽  
Vol 21 (13) ◽  
pp. 1240001 ◽  
Author(s):  
MICAH WHITNEY CHRISMAN ◽  
VASSILY OLEGOVICH MANTUROV

The present paper produces examples of Gauss diagram formulae for virtual knot invariants which have no analogue in the classical knot case. These combinatorial formulae contain additional information about how a subdiagram is embedded in a virtual knot diagram. The additional information comes from the second author's recently discovered notion of parity. For a parity of flat virtual knots, the new combinatorial formulae are Kauffman finite-type invariants. However, many of the combinatorial formulae possess exotic properties. It is shown that there exists an integer-valued virtualization invariant combinatorial formula of order n for every n (i.e. it is stable under the map which changes the direction of one arrow but preserves the sign). Hence, it is not of Goussarov–Polyak–Viro finite-type. Moreover, every homogeneous Polyak–Viro combinatorial formula admits a decomposition into an "even" part and an "odd" part. For the Gaussian parity, neither part of the formula is of GPV finite-type when it is non-constant on the set of classical knots. In addition, eleven new non-trivial combinatorial formulae of order 2 are presented which are not of GPV finite-type.

2013 ◽  
Vol 22 (06) ◽  
pp. 1350024 ◽  
Author(s):  
MYEONG-JU JEONG

Nelson and Kanenobu showed that forbidden moves unknot any virtual knot. Similarly a long virtual knot can be unknotted by a finite sequence of forbidden moves. Goussarov, Polyak and Viro introduced finite type invariants of virtual knots and long virtual knots and gave combinatorial representations of finite type invariants. We introduce Fn-moves which generalize the forbidden moves. Assume that two long virtual knots K and K′ are related by a finite sequence of Fn-moves. We show that the values of the finite type invariants of degree 2 of K and K′ are congruent modulo n and give a lower bound for the number of Fn-moves needed to transform K to K′.


2019 ◽  
Vol 28 (10) ◽  
pp. 1950064 ◽  
Author(s):  
Nicolas Petit

We generalize three invariants, first discovered by Henrich, to the long and/or framed virtual knot case. These invariants are all finite-type invariants of order one, and include a universal invariant. The generalization will require us to extend the notion of a based matrix of a virtual string, first introduced by Turaev and later generalized by Henrich, to the long and framed cases.


1996 ◽  
Vol 05 (04) ◽  
pp. 441-461 ◽  
Author(s):  
STAVROS GAROUFALIDIS

Recently Ohtsuki [Oh2], motivated by the notion of finite type knot invariants, introduced the notion of finite type invariants for oriented, integral homology 3-spheres. In the present paper we propose another definition of finite type invariants of integral homology 3-spheres and give equivalent reformulations of our notion. We show that our invariants form a filtered commutative algebra. We compare the two induced filtrations on the vector space on the set of integral homology 3-spheres. As an observation, we discover a new set of restrictions that finite type invariants in the sense of Ohtsuki satisfy and give a set of axioms that characterize the Casson invariant. Finally, we pose a set of questions relating the finite type 3-manifold invariants with the (Vassiliev) knot invariants.


1994 ◽  
Vol 03 (03) ◽  
pp. 391-405 ◽  
Author(s):  
ROLLAND TRAPP

In this paper we describe a difference sequence technique, hereafter referred to as the twist sequence technique, for studying Vassiliev invariants. This technique is used to show that Vassiliev invariants have polynomial growth on certain sequences of knots. Restrictions of Vassiliev invariants to the sequence of (2, 2i + 1) torus knots are characterized. As a corollary it is shown that genus, crossing number, signature, and unknotting number are not Vassiliev invariants. This characterization also determines the topological information about (2, 2i + 1) torus knots encoded in finite-type invariants. The main result obtained is that the complement of the space of Vassiliev invariants is dense in the space of all numeric knot invariants. Finally, we show that the uniform limit of a sequence of Vassiliev invariants must be a Vassiliev invariant.


2013 ◽  
Vol 22 (08) ◽  
pp. 1350042 ◽  
Author(s):  
MIGIWA SAKURAI

Goussarov, Polyak and Viro defined a finite type invariant and a local move called an n-variation for virtual knots. In this paper, we give the differences of the values of the finite type invariants of degree 2 and 3 between two virtual knots which can be transformed into each other by a 2- and 3-variation, respectively. As a result, we obtain lower bounds of the distance between long virtual knots by 2-variations and the distance between virtual knots by 3-variations by using the values of the finite type invariants of degree 2 and 3, respectively.


Topology ◽  
2000 ◽  
Vol 39 (5) ◽  
pp. 1045-1068 ◽  
Author(s):  
Mikhail Goussarov ◽  
Michael Polyak ◽  
Oleg Viro

2001 ◽  
Vol 10 (06) ◽  
pp. 931-935 ◽  
Author(s):  
SAM NELSON

The forbidden moves can be combined with Gauss diagram Reidemeister moves to obtain move sequences with which we may change any Gauss diagram (and hence any virtual knot) into any other, including in particular the unknotted diagram.


Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
Amrendra Gill ◽  
Maxim Ivanov ◽  
Madeti Prabhakar ◽  
Andrei Vesnin

F-polynomials for virtual knots were defined by Kaur, Prabhakar and Vesnin in 2018 using flat virtual knot invariants. These polynomials naturally generalize Kauffman’s affine index polynomial and use smoothing in the classical crossing of a virtual knot diagram. In this paper, we introduce weight functions for ordered orientable virtual and flat virtual links. A flat virtual link is an equivalence class of virtual links with respect to a local symmetry changing a type of classical crossing in a diagram. By considering three types of smoothing in classical crossings of a virtual link diagram and suitable weight functions, there is provided a recurrent construction for new invariants. It is demonstrated by explicit examples that newly defined polynomial invariants are stronger than F-polynomials.


Author(s):  
Zhiyun Cheng ◽  
Denis A. Fedoseev ◽  
Hongzhu Gao ◽  
Vassily O. Manturov ◽  
Mengjian Xu

We give a brief survey of virtual knot invariants derived from chord parity or chord index. These invariants have grown into an area in its own right due to rapid developing in the last decade. Several similar invariants of flat virtual knots and free knots are also discussed.


Sign in / Sign up

Export Citation Format

Share Document