scholarly journals On Sawollek polynomials of checkerboard colorable virtual links

2016 ◽  
Vol 25 (02) ◽  
pp. 1650010 ◽  
Author(s):  
Takanori Imabeppu

We give two new criteria of detecting checkerboard colorability of virtual links in terms of the Sawollek polynomials and compare the criteria with known criteria. By using these criteria we determine checkerboard colorability of virtual knots up to four classical crossings, with six exceptions.

2021 ◽  
Vol 30 (07) ◽  
Author(s):  
Qingying Deng ◽  
Xian’an Jin ◽  
Louis H. Kauffman

In this paper, we give two new criteria of detecting the checkerboard colorability of virtual links by using the odd writhe and the arrow polynomial of virtual links, respectively. As a result, we prove that 6 virtual knots are not checkerboard colorable, leaving only one virtual knot whose checkerboard colorability is unknown among all virtual knots up to four classical crossings.


2009 ◽  
Vol 18 (05) ◽  
pp. 625-649 ◽  
Author(s):  
YASUYUKI MIYAZAWA

We construct a multi-variable polynomial invariant Y for unoriented virtual links as a certain weighted sum of polynomials, which are derived from virtual magnetic graphs with oriented vertices, on oriented virtual links associated with a given virtual link. We show some features of the Y-polynomial including an evaluation of the virtual crossing number of a virtual link.


2012 ◽  
Vol 21 (14) ◽  
pp. 1250128
Author(s):  
KYEONGHUI LEE ◽  
YOUNG HO IM

We construct some polynomial invariants for virtual links by the recursive method, which are different from the index polynomial invariant defined in [Y. H. Im, K. Lee and S. Y. Lee, Index polynomial invariant of virtual links, J. Knot Theory Ramifications19(5) (2010) 709–725]. We show that these polynomials can distinguish whether virtual knots can be invertible or not although the index polynomial cannot distinguish the invertibility of virtual knots.


2011 ◽  
Vol 20 (12) ◽  
pp. 1649-1667 ◽  
Author(s):  
YOUNG HO IM ◽  
SERA KIM ◽  
KYEONGHUI LEE

We introduce invariants of flat virtual links which are induced from Vassiliev invariants of degree one for virtual links. Also we give several properties of these invariants for flat virtual links and examples. In particular, if the value of some invariants of flat virtual knots F are non-zero, then F is non-invertible so that every virtual knot overlying F is non-invertible.


2013 ◽  
Vol 22 (12) ◽  
pp. 1341002 ◽  
Author(s):  
ZHIYUN CHENG ◽  
HONGZHU GAO

In this paper, we define some polynomial invariants for virtual knots and links. In the first part we use Manturov's parity axioms [Parity in knot theory, Sb. Math.201 (2010) 693–733] to obtain a new polynomial invariant of virtual knots. This invariant can be regarded as a generalization of the odd writhe polynomial defined by the first author in [A polynomial invariant of virtual knots, preprint (2012), arXiv:math.GT/1202.3850v1]. The relation between this new polynomial invariant and the affine index polynomial [An affine index polynomial invariant of virtual knots, J. Knot Theory Ramification22 (2013) 1340007; A linking number definition of the affine index polynomial and applications, preprint (2012), arXiv:1211.1747v1] is discussed. In the second part we introduce a polynomial invariant for long flat virtual knots. In the third part we define a polynomial invariant for 2-component virtual links. This polynomial invariant can be regarded as a generalization of the linking number.


Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
Amrendra Gill ◽  
Maxim Ivanov ◽  
Madeti Prabhakar ◽  
Andrei Vesnin

F-polynomials for virtual knots were defined by Kaur, Prabhakar and Vesnin in 2018 using flat virtual knot invariants. These polynomials naturally generalize Kauffman’s affine index polynomial and use smoothing in the classical crossing of a virtual knot diagram. In this paper, we introduce weight functions for ordered orientable virtual and flat virtual links. A flat virtual link is an equivalence class of virtual links with respect to a local symmetry changing a type of classical crossing in a diagram. By considering three types of smoothing in classical crossings of a virtual link diagram and suitable weight functions, there is provided a recurrent construction for new invariants. It is demonstrated by explicit examples that newly defined polynomial invariants are stronger than F-polynomials.


Author(s):  
Jeremie Bouttier

This article considers some enumeration problems in knot theory, with a focus on the application of matrix integral techniques. It first reviews the basic definitions of knot theory, paying special attention to links and tangles, especially 2-tangles, before discussing virtual knots and coloured links as well as the bare matrix model that describes coloured link diagrams. It shows how the large size limit of matrix integrals with quartic potential may be used to count alternating links and tangles. The removal of redundancies amounts to renormalization of the potential. This extends into two directions: first, higher genus and the counting of ‘virtual’ links and tangles, and second, the counting of ‘coloured’ alternating links and tangles. The article analyses the asymptotic behaviour of the number of tangles as the number of crossings goes to infinity


2013 ◽  
Vol 22 (13) ◽  
pp. 1350073 ◽  
Author(s):  
YOUNG HO IM ◽  
KYOUNG IL PARK

We introduce a parity of classical crossings of virtual link diagrams which extends the Gaussian parity of virtual knot diagrams and the odd writhe of virtual links that extends that of virtual knots introduced by Kauffman [A self-linking invariants of virtual knots, Fund. Math.184 (2004) 135–158]. Also, we introduce a multi-variable polynomial invariant for virtual links by using the parity of classical crossings, which refines the index polynomial introduced in [Index polynomial invariants of virtual links, J. Knot Theory Ramifications19(5) (2010) 709–725]. As consequences, we give some properties of our invariant, and raise some examples.


2006 ◽  
Vol 15 (03) ◽  
pp. 327-338 ◽  
Author(s):  
WILLIAM J. SCHELLHORN

In 2002, Hrencecin and Kauffman defined a filamentation invariant on oriented chord diagrams that may determine whether the corresponding flat virtual knot diagrams are non-trivial. A virtual knot diagram is non-classical if its related flat virtual knot diagram is non-trivial. Hence filamentations can be used to detect non-classical virtual knots. We extend these filamentation techniques to virtual links with more than one component. We also give examples of virtual links that they can detect as non-classical.


2017 ◽  
Vol 26 (01) ◽  
pp. 1750007
Author(s):  
Isaac Benioff ◽  
Blake Mellor

We define a family of virtual knots generalizing the classical twist knots. We develop a recursive formula for the Alexander polynomial [Formula: see text] (as defined by Silver and Williams [Polynomial invariants of virtual links, J. Knot Theory Ramifications 12 (2003) 987–1000]) of these virtual twist knots. These results are applied to provide evidence for a conjecture that the odd writhe of a virtual knot can be obtained from [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document